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Light Subsets of N with Dense Quotient Sets

Shawn Hedman and David Rose

1. INTRODUCTION. Given a set S of natural numbers, we define the quotient set
of S to be the set Q(S) = { a

b : a, b ∈ S}. Which sets of natural numbers have quotient
sets that are dense in R+? This question was raised by D. Hobby and D. M. Silberger
in [2], where they proved that the set of quotients of prime numbers is dense in R+.
We say that S is Q-dense if Q(S) is dense in R+. In particular, if Q(S) = Q+, we
say that S is Q-complete. A set of natural numbers is called Q-sparse if it is not Q-
dense. At the conclusion of [2], Hobby and Silberger remark that Q-denseness and Q-
sparseness are “indubitably related to the number theoretic and probabilistic densities
of a sequence of positive integers,” such as the densities discussed in Chapter 11 of
[4]. We investigate this claim.

We make the following initial observation regarding Q-denseness.

Proposition 1. If S ⊂ N is Q-dense then so is S \ F for any finite set F.

August–September 2009] NOTES 635



Proof. By induction, it suffices to show that S0 is Q-dense, where S0 = S \ {a} for
fixed a ∈ S. Let D = { a

b : b ∈ S}⋃{ b
a : b ∈ S}. The ‘D’ stands not for ‘dense’ but for

‘discrete.’ Because 0 �∈ R+, D is closed and discrete and hence nowhere dense in R+.
Because Q(S) = Q(S0) ∪ D is dense in R+, so is Q(S0).

It follows that the properties of Q-denseness and Q-sparseness are determined by
the tail of the set S. It therefore seems reasonable to consider the density of the set as
defined in Chapter 11 of [4]. For each n ∈ N, let Sn = {s ∈ S : s ≤ n}.
Definition 1. The natural density of S, denoted δ(S), is defined as:

δ(S) = lim
n→∞

|Sn|
n

.

The natural density measures the tenuousness of an infinite subset of N. For ex-
ample, if E is the set of even numbers, then δ(E) = 1

2 . More generally, given b, d ∈ N,
the arithmetic progression A(b,d) = {b + dn : n ∈ N} has natural density δ(A(b,d)) = 1

d .
We say that a set S ⊂ N is light if δ(S) = 0. As we shall show, lightness is neither a
necessary nor a sufficient condition for Q-sparseness.

2. EXTREMELY LIGHT SETS. We generalize the notion of lightness as follows.

Definition 2. Let f : R+ → R+ be increasing and unbounded. A set S ⊂ N is f -light
if limn→∞ |Sn|/ f (n) = 0.

Definition 3. For each p ∈ N, a set S ⊂ N is p-light if it is f -light for f (x) = x1/p.
So light sets are 1-light. If S is p-light for all p, then it is ultra-light.

In the examples and sections that follow, �x� denotes the greatest integer less than
or equal to x .

Example 1. For each p ∈ N, the set A(p) = {n p+1 : n ∈ N} is p-light but not (p + 1)-
light. To see this, note that

0 ≤ lim
n→∞

|(A(p))n|
p
√

n
= lim

n→∞
� p+1

√
n�

p
√

n

≤ lim
n→∞

p+1
√

n
p
√

n
= lim

n→∞
1

p(p+1)
√

n
= 0,

whereas
〈|(A(p))n|/ p+1

√
n
〉∞
n=1

has the constant nonzero subsequence

〈 |(A(p))n p+1 |
p+1
√

n p+1

〉∞

n=1

= 〈1〉∞
n=1 .

Example 2. For each a > 1, the set B(a) = {an : n ∈ N} is ultra-light but not ln-light.
To see this, note that for each p ∈ N,

0 ≤ lim
n→∞

|(B(a))n|
p
√

n
= lim

n→∞
�loga n�

p
√

n

≤ lim
n→∞

loga n
p
√

n
=

( p

ln a

)
lim

n→∞
ln p

√
n

p
√

n
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≤
( p

ln a

)
lim

n→∞
1

2p
√

n
= 0,

whereas

lim
n→∞

|B(a)an |
ln an

= lim
n→∞

n

n ln a
= 1

ln a
> 0.

Definition 4. For each k ∈ N, a set S ⊂ N is k-log-light if it is f -light for

f (x) = ln(ln(. . . (ln︸ ︷︷ ︸
k times

(x)))).

So ln-light sets are 1-log-light. If S is k-log-light for all k, then it is ultra-log-light.

Example 3. The set C = {nn : n ∈ N} is 1-log-light but not 2-log-light. To see this,
note that |Cn||Cn | ≤ n so that |Cn| ln |Cn| ≤ ln n for each n ∈ N. We have

0 ≤ lim
n→∞

|Cn|
ln n

≤ lim
n→∞

|Cn|
|Cn| ln |Cn| = lim

n→∞
1

ln |Cn| = 0.

On the other hand,

lim
n→∞

|Cnn |
ln(ln nn)

= lim
n→∞

n

ln n + ln(ln n)
= ∞.

Similarly, for each k ∈ N, the set

C(k) = { nn..
.n

︸ ︷︷ ︸
k+1 times

: n ∈ N}

is k-log-light but not (k + 1)-log-light.

Example 4. Consider the Ackermann function α : (N ∪ {0})2 → N defined induc-
tively by:

α(0, x) = x + 1, α(n + 1, 0) = α(n, 1), and α(n + 1, x + 1) = α(n, α(n + 1, x)).

The function g(n) = α(n, n) grows faster than any primitive recursive function (see
[1, Section 7.1.2]). It follows that the range of g(n) (for n ∈ N) is ultra-log-light.

Each set in Examples 1–4 is Q-sparse. In contrast, consider the set of primes. It
follows from the prime number theorem that the primes are 1-light but not 2-light. Yet
Hobby and Silberger demonstrated that the primes are Q-dense and therefore not Q-
sparse. Recently, Syrous Marivani [3] has reportedly improved the Hobby-Silberger
result by showing that the set of Dirichlet primes P(a,b) contained in the arithmetic
sequence a + bN, where a, b ∈ N are coprime, is Q-dense. Moreover, it follows from
the prime number theorem for Dirchlet primes due to Vallee-Poussin [5] that P(a,b) is
also light but not 2-light.

We now show that arbitrarily light Q-dense sets exist.

Theorem 1. Let f : R+ → R+ be increasing and unbounded. There exists a set S ⊂
N that is both f-light and Q-complete.
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Proof. Define g : N → N by g(n) = y where y is the smallest natural number such
that f (y) > n2. Enumerate the positive rational numbers as Q+ = {qi : i ∈ N}. Con-
struct the set S = {si : i ∈ N} by repeating the following step for each n ∈ N: Step n:
Choose s2n−1 and s2n greater than g(2n) with s2n−1/s2n = qn .

The last condition entails Q(S) = Q+, and so S is Q-complete. The first condition
entails that sn > g(n) for each n. Fix n ∈ N. For each si ∈ Sn we claim that i ≤ √

f (n).
Otherwise f (n) < i2, which implies g(i) > n (by the definition of g). But then we
have si > g(i) > n, contradicting si ∈ Sn. It follows that |Sn| ≤ √

f (n). We have:

lim
n→∞

|Sn|
f (n)

≤ lim
n→∞

√
f (n)

f (n)
= lim

n→∞
1√
f (n)

= 0

so that S is f -light as we wanted to show.

Corollary 1. There exist ultra-log-light sets that are not Q-sparse.

Proof. Let R be the range of g(n) from Example 4 and let f (x) = |{y ∈ R : y < x}|.
By Theorem 1, there exists S ⊂ N that is f -light and Q-dense.

3. RATIOS OF POWERS. Fix a ∈ N with a > 1 and recall the set B(a) = {an : n ∈
N} from Example 2. As was shown, B(a) is ultra-light. Because Q(B(a)) ∩ ( 1

a , a) =
{1}, B(a) is Q-sparse. Now fix b ∈ N with b > 1 and gcd(a, b) = 1. Let B(a, b) =
B(a) ∪ B(b). We prove that Q(B(a, b)) is dense in R+. This demonstrates that the
union of two Q-sparse sets need not be Q-sparse. It also provides concrete examples of
ultra-light sets that are not Q-sparse. We verify the Q-denseness of B(a, b) in Section
3.2. We first establish a needed lemma.

3.1. Integer multiples of irrational numbers (mod 1). Let x be a real number.
The fractional part of x is here denoted by [x] = x − �x�. We let Dx denote the set
{[nx] : n ∈ N}. Clearly, Dx is finite if x is rational. We prove that Dx is dense in (0, 1)

if x is irrational.

Proposition 2. If x is irrational, then [mx] �= [nx] for distinct m and n in N.

Proof. [mx] = [nx] implies mx − nx = k for some integer k. But this implies x =
k

m−n contradicting the irrationality of x .

Proposition 3. For k ∈ N, k[x] < 1 implies k[x] = [kx].
Proof. If x is an integer, then k[x] = [kx] = 0. Otherwise, k[x] < 1 implies 0 <

k(x − �x�) < 1 which implies k�x� < kx < k�x� + 1. It follows that �kx� = k�x�.
Now k[x] = k(x − �x�) = kx − k�x� = kx − �kx� = [kx].
Lemma 1. If x is irrational, then Dx is dense in (0, 1).

Proof. We show that Dx ∩ (u, v) �= ∅ whenever 0 < u < v < 1. Take ε such that
0 < ε < (v − u). The sequence {[nx]}∞

n=1 is bounded and therefore has a monotonic
convergent subsequence. By Proposition 2, the terms of the sequence are distinct, and
so this subsequence is either strictly increasing or strictly decreasing. Suppose first
that {[nx]}∞

n=1 has a strictly increasing convergent subsequence. Then we can choose
natural numbers m < n such that

0 < [nx] − [mx] < ε.
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By definition of [nx] and [mx]:

0 < (nx − �nx�) − (mx − �mx�) < ε

0 < (n − m)x − (�nx� − �mx�) < ε

(�nx� − �mx�) < (n − m)x < (�nx� − �mx�) + ε.

Because ε < (v − u) < 1, (n − m)x is between the consecutive integers (�nx� −
�mx�) and (�nx� − �mx�) + 1. Thus �(n − m)x� = (�nx� − �mx�), and so we have:

0 < [(n − m)x] = (n − m)x − �(n − m)x�
= (n − m)x − (�nx� − �mx�)
= [nx] − [mx] < ε.

Because ε < (v − u), there exists an integer k > 0 so that u < k[(n − m)x] < v.
By Proposition 3, k[(n − m)x] = [k(n − m)x]. We have [k(n − m)x] ∈ Dx ∩ (u, v)

as we wanted to show.
Now suppose that the monotonic convergent subsequence of {[nx]}∞

n=1 is strictly
decreasing. Then the same argument shows that D−x is dense in (0, 1). But D−x is the
image of Dx under the homeomorphism x �→ 1 − x . Since D−x is dense in (0, 1), so
is Dx .

Corollary 2. For irrational x and N ∈ N, the set D(x,N ) = {[nx] : n > N } is dense in
(0, 1).

Proof. This follows from Lemma 1 and the fact that Dx \ D(x,N ) is finite.

3.2. B(a, b) is not Q-sparse for co-prime a and b.

Theorem 2. If gcd(a, b) = 1 and a > 1 and b > 1, then Q(B(a, b)) is dense in R+.

Proof. Let x = loga(b). This is an irrational number. Otherwise, if x = n
m for m, n ∈

N, then an = bm . This contradicts gcd(a, b) = 1.
Let L = {nx − m : m, n ∈ N}. Because anx−m = bn/am , the image of L under the

homeomorphism x �→ ax is a proper subset of Q(B(a, b)). So to show that Q(B(a, b))

is dense in R+, it suffices to show that L is dense in R.
Fix r and ε in R with ε > 0. To show that L is dense in R, it suffices to find m, n ∈ N

with |(nx − m) − r | < ε.
Fix N ∈ N so that N > r+1

x . By Corollary 2, the set D(x,N ) = {[nx] : n > N } is
dense in (0, 1). So there exists n > N so that |[nx] − [r ]| < ε. We have |(nx − �nx�) −
(r − �r�)| < ε and so |nx − (�nx� − �r�) − r | < ε.

Let m = (�nx� − �r�). Because n > r+1
x , we have m ≥ 1. Now (nx − m) ∈ L and

|(nx − m) − r | < ε as we wanted to show.

Corollary 3. The natural numbers can be partitioned as N = �∞
i=1 Ni where each Ni

is Q-dense and Q(Ni ) ∩ Q(N j ) = ∅ for i �= j .

Proof. Let N1 = B(2, 3) ∪ {1}. For i > 1, let Ni = B(ai , bi ), where ai is least such
that ai �∈ N j for j < i and bi is such that gcd(ai , bi ) = 1 and bi �∈ N j for j < i .
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4. NON-LIGHT SETS. If a set S ⊂ N is not light, then either limn→∞ |Sn|/n > 0 or
else this limit does not exist. We show that S is necessarily Q-dense in the first case
but not the second.

Proposition 4. If δ(S) = � > 0, then Q(S) is dense in R+.

Proof. Fix q ∈ Q+ and ε > 0. Enumerate S as an increasing sequence 〈si : i ∈ N〉. It
suffices to find sn, sm ∈ S with | sm

sn
− q| < ε.

According to Theorem 11.1 of [4], limn→∞ n/sn = limn→∞ |Sn|/n = �. Since � >

0, there exists N so that n, m > N implies

∣∣∣∣ (n/sn)

(m/sm)
− 1

∣∣∣∣ <
ε

q
.

Choose n, m > N so that m/n = q. We have:

∣∣∣∣ n

sn

sm

m
− 1

∣∣∣∣ =
∣∣∣∣sm/sn

q
− 1

∣∣∣∣ <
ε

q

which implies |sm/sn − q| < ε.

Proposition 5. There exists a non-light Q-sparse set.

Proof. Consider S = N ∩ (⋃∞
n=1[23n−1, 23n]). The first several terms of this set are

4, 5, 6, 7, 8, 32, 33, . . . , 63, 64, 256, 257, . . . , 511, 512, 2048, 2049, . . .

To see that S is Q-sparse, take p, q ∈ S with p < q. If {p, q} ⊂ [23n−1, 23n]
for some n ∈ N, then q/p ≤ 23n/23n−1 = 2. Otherwise, p ∈ [23n−1, 23n] and q ∈
[23m−1, 23m] for some m, n ∈ N with m < n. In this case, q/p ≥ 23n−1/23m ≥
23n−1/23(n−1) = 4. It follows that S ∩ (2, 4) = ∅ and S is Q-sparse as claimed.

To show that S is not light, it suffices to show that a subsequence of 〈|Sn|/n〉+∞
n=1 has

a positive limit. Indeed,

lim
n→∞

|S23n |
23n

= lim
n→∞

n +
n−1∑
k=0

23(n−k)−1

23n

= lim
n→∞

n−1∑
k=0

23(n−k)−1

23n

= 1

2
lim

n→∞

n−1∑
k=0

(
1

8

)k

= 1

2

∞∑
k=0

(
1

8

)k

= 4

7
> 0.

5. CONCLUSION. The Q-sparseness of a set of natural numbers does not depend
on the natural density of the set. The set S in the proof of Proposition 5 contains
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arbitrarily long sequences of consecutive integers and is Q-sparse. On the other hand,
according to Corollary 1 there exist ultra-log-light sets that are not Q-sparse.
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The Least Prime in
Certain Arithmetic Progressions

Juan Sabia and Susana Tesauri

Dirichlet’s theorem states that, if a and n are relatively prime integers, there are in-
finitely many primes in the arithmetic progression n + a, 2n + a, 3n + a, . . . . How-
ever, as stated in [3], the known proofs of this general result are not elementary (see [1,
10, 12], for example). Linnik [4, 5] proved that, if 1 ≤ a < n, there are absolute con-
stants c1 and c2 so that the least prime p in such a progression satisfies p ≤ c1nc2 ,
but his proof is not elementary either. There are several different proofs of Dirichlet’s
theorem for the particular case a = 1 (see for example [2, 6, 9, 11]). In [7], moreover,
the bound p < n3n for the least prime satisfying p ≡ 1 (mod n) is given.

Our aim is to use an elementary argument, which also shows that there are infinitely
many primes ≡ 1 (mod n), to prove that the least such prime lies below (3n − 1)/2.

For n = 2, the result is obvious, so let n be an integer, n > 2. Let �n(x) denote the
nth cyclotomic polynomial. That is,

�n(x) =
n∏

a=1
(a,n)=1

(
x − e2π ia/n

)

is the polynomial of degree φ(n) whose zeros are the primitive nth roots of unity. It is
well known that �n(x) is a monic, irreducible polynomial with integer coefficients.

Our proof is based on the following observation: For any integer b, the prime factors
of �n(b) are either prime divisors of n, or are ≡ 1 (mod n). Moreover, if n > 2, any
prime divisor of n can divide �n(b) only to the exponent 1; that is, its square does not
divide �n(b).
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