Light Subsets of \mathbb{N} with Dense Quotient Sets

Shawn Hedman \& David Rose

To cite this article: Shawn Hedman \& David Rose (2009) Light Subsets of \mathbb{N} with Dense Quotient Sets, The American Mathematical Monthly, 116:7, 635-641, DOI: 10.1080/00029890.2009.11920981

To link to this article: https://doi.org/10.1080/00029890.2009.11920981

1. P. Erdős, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932) 194-198; also available at http://www.math-inst.hu/~~p_erdos/1932-01.pdf.
2. -, Ramanujan and I, in Number Theory, Madras 1987, Lecture Notes in Mathematics, no. 1395, Springer, Berlin, 1989; also available at http://www.iisc.ernet.in/academy/ resonance/Mar1998/pdf/Mar1998Reflections.pdf.
3. S. Finch, Mathematical Constants, Encyclopedia of Mathematics and Its Applications, vol. 94, Cambridge University Press, Cambridge, 2003.
4. S. Laishram, On a conjecture on Ramanujan primes, 2009 (preprint).
5. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea, New York, 1974; 3rd (corrected) reprint of 1st ed., Teubner, Leipzig, 1909.
6. W. J. LeVeque, Fundamentals of Number Theory, Dover, Mineola, NY, 1996; reprint of the 1st ed., Addison-Wesley, Reading, MA, 1977.
7. D. Ramakrishnan, Existence of Ramanujan primes for GL(3), in Contributions to Automorphic Forms, Geometry, and Number Theory: A Volume in Honor of Joseph Shalika, H. Hida, D. Ramakrishnan, and F. Shahidi, eds., The Johns Hopkins University Press, Baltimore, 2004, 711-718.
8. S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc. 11 (1919) 181-182; also available at http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper24/page1.htm.
9. -, Collected Papers of Srinivasa Ramanujan, G. H. Hardy, S. Aiyar, P. Venkatesvara, and B. M. Wilson, eds., commentary by B. C. Berndt, American Mathematical Society, Providence, RI, 2000.
10. P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer-Verlag, New York, 1989.
11. J. B. Rosser, The nth prime is greater than $n \ln n$, Proc. London Math. Soc. 45 (1938) 21-44.
12. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962) 64-94.
13. -, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$, Math. Comp. 29 (1975) 243-269.
14. J. Sondow, Sequence A104272: Ramanujan primes (2005), in The On-Line Encyclopedia of Integer Sequences, N. J. A. Sloane, ed., available at http://www.research.att.com/~njas/sequences/ A104272.
15. -, Ramanujan prime-From MathWorld, A Wolfram Web Resource, E. W. Weisstein, ed., http: //mathworld.wolfram.com/RamanujanPrime.html.

209 West 97th Street, New York, NY 10025
jsondow@alumni.princeton.edu

Light Subsets of \mathbb{N} with Dense Quotient Sets

Shawn Hedman and David Rose

1. INTRODUCTION. Given a set S of natural numbers, we define the quotient set of S to be the set $Q(S)=\left\{\frac{a}{b}: a, b \in S\right\}$. Which sets of natural numbers have quotient sets that are dense in \mathbb{R}^{+}? This question was raised by D. Hobby and D. M. Silberger in [2], where they proved that the set of quotients of prime numbers is dense in \mathbb{R}^{+}. We say that S is Q-dense if $Q(S)$ is dense in \mathbb{R}^{+}. In particular, if $Q(S)=\mathbb{Q}^{+}$, we say that S is Q-complete. A set of natural numbers is called Q-sparse if it is not Q dense. At the conclusion of [2], Hobby and Silberger remark that Q-denseness and Q sparseness are "indubitably related to the number theoretic and probabilistic densities of a sequence of positive integers," such as the densities discussed in Chapter 11 of [4]. We investigate this claim.

We make the following initial observation regarding Q-denseness.
Proposition 1. If $S \subset \mathbb{N}$ is Q-dense then so is $S \backslash F$ for any finite set F.

Proof. By induction, it suffices to show that S_{0} is Q-dense, where $S_{0}=S \backslash\{a\}$ for fixed $a \in S$. Let $D=\left\{\frac{a}{b}: b \in S\right\} \bigcup\left\{\frac{b}{a}: b \in S\right\}$. The 'D' stands not for 'dense' but for 'discrete.' Because $0 \notin \mathbb{R}^{+}, D$ is closed and discrete and hence nowhere dense in \mathbb{R}^{+}. Because $Q(S)=Q\left(S_{0}\right) \cup D$ is dense in \mathbb{R}^{+}, so is $Q\left(S_{0}\right)$.

It follows that the properties of Q-denseness and Q-sparseness are determined by the tail of the set S. It therefore seems reasonable to consider the density of the set as defined in Chapter 11 of [4]. For each $n \in \mathbb{N}$, let $S_{n}=\{s \in S: s \leq n\}$.

Definition 1. The natural density of S, denoted $\delta(S)$, is defined as:

$$
\delta(S)=\lim _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{n}
$$

The natural density measures the tenuousness of an infinite subset of \mathbb{N}. For example, if E is the set of even numbers, then $\delta(E)=\frac{1}{2}$. More generally, given $b, d \in \mathbb{N}$, the arithmetic progression $A_{(b, d)}=\{b+d n: n \in \mathbb{N}\}$ has natural density $\delta\left(A_{(b, d)}\right)=\frac{1}{d}$. We say that a set $S \subset \mathbb{N}$ is light if $\delta(S)=0$. As we shall show, lightness is neither a necessary nor a sufficient condition for Q-sparseness.
2. EXTREMELY LIGHT SETS. We generalize the notion of lightness as follows.

Definition 2. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be increasing and unbounded. A set $S \subset \mathbb{N}$ is f-light if $\lim _{n \rightarrow \infty}\left|S_{n}\right| / f(n)=0$.

Definition 3. For each $p \in \mathbb{N}$, a set $S \subset \mathbb{N}$ is p-light if it is f-light for $f(x)=x^{1 / p}$. So light sets are 1-light. If S is p-light for all p, then it is ultra-light.

In the examples and sections that follow, $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.

Example 1. For each $p \in \mathbb{N}$, the set $A(p)=\left\{n^{p+1}: n \in \mathbb{N}\right\}$ is p-light but not $(p+1)$ light. To see this, note that

$$
\begin{aligned}
0 & \leq \lim _{n \rightarrow \infty} \frac{\left|(A(p))_{n}\right|}{\sqrt[p]{n}}=\lim _{n \rightarrow \infty} \frac{\lfloor\sqrt[p+1]{n}\rfloor}{\sqrt[p]{n}} \\
& \leq \lim _{n \rightarrow \infty} \frac{\sqrt[p+1]{n}}{\sqrt[p]{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[p(p+1)]{n}}=0,
\end{aligned}
$$

whereas $\langle |(A(p))_{n}|/ \sqrt[p+1]{n}|_{n=1}^{\infty}$ has the constant nonzero subsequence

$$
\left\langle\frac{\left|(A(p))_{n^{p+1}}\right|}{\sqrt[p+1]{n^{p+1}}}\right\rangle_{n=1}^{\infty}=\langle 1\rangle_{n=1}^{\infty} .
$$

Example 2. For each $a>1$, the set $B(a)=\left\{a^{n}: n \in \mathbb{N}\right\}$ is ultra-light but not ln-light. To see this, note that for each $p \in \mathbb{N}$,

$$
\begin{aligned}
0 & \leq \lim _{n \rightarrow \infty} \frac{\left|(B(a))_{n}\right|}{\sqrt[p]{n}}=\lim _{n \rightarrow \infty} \frac{\left\lfloor\log _{a} n\right\rfloor}{\sqrt[p]{n}} \\
& \leq \lim _{n \rightarrow \infty} \frac{\log _{a} n}{\sqrt[p]{n}}=\left(\frac{p}{\ln a}\right) \lim _{n \rightarrow \infty} \frac{\ln \sqrt[p]{n}}{\sqrt[p]{n}}
\end{aligned}
$$

$$
\leq\left(\frac{p}{\ln a}\right) \lim _{n \rightarrow \infty} \frac{1}{\sqrt[2 p]{n}}=0
$$

whereas

$$
\lim _{n \rightarrow \infty} \frac{\left|B(a)_{a^{n}}\right|}{\ln a^{n}}=\lim _{n \rightarrow \infty} \frac{n}{n \ln a}=\frac{1}{\ln a}>0 .
$$

Definition 4. For each $k \in \mathbb{N}$, a set $S \subset \mathbb{N}$ is k-log-light if it is f-light for

$$
f(x)=\underbrace{\ln (\ln (\ldots(\ln }_{k \text { times }}(x)))) .
$$

So \ln-light sets are 1 -log-light. If S is k-log-light for all k, then it is ultra-log-light.
Example 3. The set $C=\left\{n^{n}: n \in \mathbb{N}\right\}$ is 1-log-light but not 2-log-light. To see this, note that $\left|C_{n}\right|^{\left|C_{n}\right|} \leq n$ so that $\left|C_{n}\right| \ln \left|C_{n}\right| \leq \ln n$ for each $n \in \mathbb{N}$. We have

$$
0 \leq \lim _{n \rightarrow \infty} \frac{\left|C_{n}\right|}{\ln n} \leq \lim _{n \rightarrow \infty} \frac{\left|C_{n}\right|}{\left|C_{n}\right| \ln \left|C_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{\ln \left|C_{n}\right|}=0 .
$$

On the other hand,

$$
\lim _{n \rightarrow \infty} \frac{\left|C_{n^{n}}\right|}{\ln \left(\ln n^{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{\ln n+\ln (\ln n)}=\infty .
$$

Similarly, for each $k \in \mathbb{N}$, the set

$$
C(k)=\{\underbrace{n^{n} . \cdot^{n}}_{k+1 \text { times }}: n \in \mathbb{N}\}
$$

is k-log-light but not $(k+1)$-log-light.
Example 4. Consider the Ackermann function $\alpha:(\mathbb{N} \cup\{0\})^{2} \rightarrow \mathbb{N}$ defined inductively by:

$$
\alpha(0, x)=x+1, \alpha(n+1,0)=\alpha(n, 1), \text { and } \alpha(n+1, x+1)=\alpha(n, \alpha(n+1, x)) .
$$

The function $g(n)=\alpha(n, n)$ grows faster than any primitive recursive function (see [1, Section 7.1.2]). It follows that the range of $g(n)$ (for $n \in \mathbb{N}$) is ultra-log-light.

Each set in Examples 1-4 is Q-sparse. In contrast, consider the set of primes. It follows from the prime number theorem that the primes are 1-light but not 2-light. Yet Hobby and Silberger demonstrated that the primes are Q-dense and therefore not Q sparse. Recently, Syrous Marivani [3] has reportedly improved the Hobby-Silberger result by showing that the set of Dirichlet primes $P_{(a, b)}$ contained in the arithmetic sequence $a+b \mathbb{N}$, where $a, b \in \mathbb{N}$ are coprime, is Q-dense. Moreover, it follows from the prime number theorem for Dirchlet primes due to Vallee-Poussin [5] that $P_{(a, b)}$ is also light but not 2-light.

We now show that arbitrarily light Q-dense sets exist.
Theorem 1. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be increasing and unbounded. There exists a set $S \subset$ \mathbb{N} that is both f-light and Q-complete.

Proof. Define $g: \mathbb{N} \rightarrow \mathbb{N}$ by $g(n)=y$ where y is the smallest natural number such that $f(y)>n^{2}$. Enumerate the positive rational numbers as $\mathbb{Q}^{+}=\left\{q_{i}: i \in \mathbb{N}\right\}$. Construct the set $S=\left\{s_{i}: i \in \mathbb{N}\right\}$ by repeating the following step for each $n \in \mathbb{N}$: Step n : Choose $s_{2 n-1}$ and $s_{2 n}$ greater than $g(2 n)$ with $s_{2 n-1} / s_{2 n}=q_{n}$.

The last condition entails $Q(S)=\mathbb{Q}^{+}$, and so S is Q-complete. The first condition entails that $s_{n}>g(n)$ for each n. Fix $n \in \mathbb{N}$. For each $s_{i} \in S_{n}$ we claim that $i \leq \sqrt{f(n)}$. Otherwise $f(n)<i^{2}$, which implies $g(i)>n$ (by the definition of g). But then we have $s_{i}>g(i)>n$, contradicting $s_{i} \in S_{n}$. It follows that $\left|S_{n}\right| \leq \sqrt{f(n)}$. We have:

$$
\lim _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{f(n)} \leq \lim _{n \rightarrow \infty} \frac{\sqrt{f(n)}}{f(n)}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{f(n)}}=0
$$

so that S is f-light as we wanted to show.
Corollary 1. There exist ultra-log-light sets that are not Q-sparse.
Proof. Let R be the range of $g(n)$ from Example 4 and let $f(x)=|\{y \in R: y<x\}|$. By Theorem 1, there exists $S \subset \mathbb{N}$ that is f-light and Q-dense.
3. RATIOS OF POWERS. Fix $a \in \mathbb{N}$ with $a>1$ and recall the set $B(a)=\left\{a^{n}: n \in\right.$ $\mathbb{N}\}$ from Example 2. As was shown, $B(a)$ is ultra-light. Because $Q(B(a)) \cap\left(\frac{1}{a}, a\right)=$ $\{1\}, B(a)$ is Q-sparse. Now fix $b \in \mathbb{N}$ with $b>1$ and $\operatorname{gcd}(a, b)=1$. Let $B(a, b)=$ $B(a) \cup B(b)$. We prove that $Q(B(a, b))$ is dense in \mathbb{R}^{+}. This demonstrates that the union of two Q-sparse sets need not be Q-sparse. It also provides concrete examples of ultra-light sets that are not Q-sparse. We verify the Q-denseness of $B(a, b)$ in Section 3.2. We first establish a needed lemma.
3.1. Integer multiples of irrational numbers $(\bmod 1)$. Let x be a real number. The fractional part of x is here denoted by $[x]=x-\lfloor x\rfloor$. We let D_{x} denote the set $\{[n x]: n \in \mathbb{N}\}$. Clearly, D_{x} is finite if x is rational. We prove that D_{x} is dense in $(0,1)$ if x is irrational.

Proposition 2. If x is irrational, then $[m x] \neq[n x]$ for distinct m and n in \mathbb{N}.
Proof. $[m x]=[n x]$ implies $m x-n x=k$ for some integer k. But this implies $x=$ $\frac{k}{m-n}$ contradicting the irrationality of x.

Proposition 3. For $k \in \mathbb{N}, k[x]<1$ implies $k[x]=[k x]$.
Proof. If x is an integer, then $k[x]=[k x]=0$. Otherwise, $k[x]<1$ implies $0<$ $k(x-\lfloor x\rfloor)<1$ which implies $k\lfloor x\rfloor<k x<k\lfloor x\rfloor+1$. It follows that $\lfloor k x\rfloor=k\lfloor x\rfloor$. Now $k[x]=k(x-\lfloor x\rfloor)=k x-k\lfloor x\rfloor=k x-\lfloor k x\rfloor=[k x]$.

Lemma 1. If x is irrational, then D_{x} is dense in $(0,1)$.
Proof. We show that $D_{x} \cap(u, v) \neq \emptyset$ whenever $0<u<v<1$. Take ϵ such that $0<\epsilon<(v-u)$. The sequence $\{[n x]\}_{n=1}^{\infty}$ is bounded and therefore has a monotonic convergent subsequence. By Proposition 2, the terms of the sequence are distinct, and so this subsequence is either strictly increasing or strictly decreasing. Suppose first that $\{[n x]\}_{n=1}^{\infty}$ has a strictly increasing convergent subsequence. Then we can choose natural numbers $m<n$ such that

$$
0<[n x]-[m x]<\epsilon .
$$

By definition of $[n x]$ and $[m x]$:

$$
\begin{aligned}
0 & <(n x-\lfloor n x\rfloor)-(m x-\lfloor m x\rfloor)<\epsilon \\
0 & <(n-m) x-(\lfloor n x\rfloor-\lfloor m x\rfloor)<\epsilon \\
(\lfloor n x\rfloor-\lfloor m x\rfloor) & <(n-m) x<(\lfloor n x\rfloor-\lfloor m x\rfloor)+\epsilon
\end{aligned}
$$

Because $\epsilon<(v-u)<1$, $(n-m) x$ is between the consecutive integers $(\lfloor n x\rfloor-$ $\lfloor m x\rfloor)$ and $(\lfloor n x\rfloor-\lfloor m x\rfloor)+1$. Thus $\lfloor(n-m) x\rfloor=(\lfloor n x\rfloor-\lfloor m x\rfloor)$, and so we have:

$$
\begin{aligned}
0<[(n-m) x] & =(n-m) x-\lfloor(n-m) x\rfloor \\
& =(n-m) x-(\lfloor n x\rfloor-\lfloor m x\rfloor) \\
& =[n x]-[m x]<\epsilon
\end{aligned}
$$

Because $\epsilon<(v-u)$, there exists an integer $k>0$ so that $u<k[(n-m) x]<v$. By Proposition 3, $k[(n-m) x]=[k(n-m) x]$. We have $[k(n-m) x] \in D_{x} \cap(u, v)$ as we wanted to show.

Now suppose that the monotonic convergent subsequence of $\{[n x]\}_{n=1}^{\infty}$ is strictly decreasing. Then the same argument shows that D_{-x} is dense in $(0,1)$. But D_{-x} is the image of D_{x} under the homeomorphism $x \mapsto 1-x$. Since D_{-x} is dense in $(0,1)$, so is D_{x}.

Corollary 2. For irrational x and $N \in \mathbb{N}$, the set $D_{(x, N)}=\{[n x]: n>N\}$ is dense in (0, 1).

Proof. This follows from Lemma 1 and the fact that $D_{x} \backslash D_{(x, N)}$ is finite.

3.2. $B(a, b)$ is not Q-sparse for co-prime a and b.

Theorem 2. If $\operatorname{gcd}(a, b)=1$ and $a>1$ and $b>1$, then $Q(B(a, b))$ is dense in \mathbb{R}^{+}.

Proof. Let $x=\log _{a}(b)$. This is an irrational number. Otherwise, if $x=\frac{n}{m}$ for $m, n \in$ \mathbb{N}, then $a^{n}=b^{m}$. This contradicts $\operatorname{gcd}(a, b)=1$.

Let $L=\{n x-m: m, n \in \mathbb{N}\}$. Because $a^{n x-m}=b^{n} / a^{m}$, the image of L under the homeomorphism $x \mapsto a^{x}$ is a proper subset of $Q(B(a, b))$. So to show that $Q(B(a, b))$ is dense in \mathbb{R}^{+}, it suffices to show that L is dense in \mathbb{R}.

Fix r and ϵ in \mathbb{R} with $\epsilon>0$. To show that L is dense in \mathbb{R}, it suffices to find $m, n \in \mathbb{N}$ with $|(n x-m)-r|<\epsilon$.

Fix $N \in \mathbb{N}$ so that $N>\frac{r+1}{x}$. By Corollary 2, the set $D_{(x, N)}=\{[n x]: n>N\}$ is dense in $(0,1)$. So there exists $n>N$ so that $|[n x]-[r]|<\epsilon$. We have $\mid(n x-\lfloor n x\rfloor)-$ $(r-\lfloor r\rfloor) \mid<\epsilon$ and so $|n x-(\lfloor n x\rfloor-\lfloor r\rfloor)-r|<\epsilon$.

Let $m=(\lfloor n x\rfloor-\lfloor r\rfloor)$. Because $n>\frac{r+1}{x}$, we have $m \geq 1$. Now $(n x-m) \in L$ and $|(n x-m)-r|<\epsilon$ as we wanted to show.

Corollary 3. The natural numbers can be partitioned as $\mathbb{N}=\sqcup_{i=1}^{\infty} N_{i}$ where each N_{i} is Q-dense and $Q\left(N_{i}\right) \cap Q\left(N_{j}\right)=\emptyset$ for $i \neq j$.

Proof. Let $N_{1}=B(2,3) \cup\{1\}$. For $i>1$, let $N_{i}=B\left(a_{i}, b_{i}\right)$, where a_{i} is least such that $a_{i} \notin N_{j}$ for $j<i$ and b_{i} is such that $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$ and $b_{i} \notin N_{j}$ for $j<i$.
4. NON-LIGHT SETS. If a set $S \subset \mathbb{N}$ is not light, then either $\lim _{n \rightarrow \infty}\left|S_{n}\right| / n>0$ or else this limit does not exist. We show that S is necessarily Q-dense in the first case but not the second.

Proposition 4. If $\delta(S)=\ell>0$, then $Q(S)$ is dense in \mathbb{R}^{+}.
Proof. Fix $q \in \mathbb{Q}^{+}$and $\epsilon>0$. Enumerate S as an increasing sequence $\left\langle s_{i}: i \in \mathbb{N}\right\rangle$. It suffices to find $s_{n}, s_{m} \in S$ with $\left|\frac{s_{m}}{s_{n}}-q\right|<\epsilon$.

According to Theorem 11.1 of [4], $\lim _{n \rightarrow \infty} n / s_{n}=\lim _{n \rightarrow \infty}\left|S_{n}\right| / n=\ell$. Since $\ell>$ 0 , there exists N so that $n, m>N$ implies

$$
\left|\frac{\left(n / s_{n}\right)}{\left(m / s_{m}\right)}-1\right|<\frac{\epsilon}{q} .
$$

Choose $n, m>N$ so that $m / n=q$. We have:

$$
\left|\frac{n}{s_{n}} \frac{s_{m}}{m}-1\right|=\left|\frac{s_{m} / s_{n}}{q}-1\right|<\frac{\epsilon}{q}
$$

which implies $\left|s_{m} / s_{n}-q\right|<\epsilon$.
Proposition 5. There exists a non-light Q-sparse set.
Proof. Consider $S=\mathbb{N} \cap\left(\bigcup_{n=1}^{\infty}\left[2^{3 n-1}, 2^{3 n}\right]\right)$. The first several terms of this set are

$$
4,5,6,7,8,32,33, \ldots, 63,64,256,257, \ldots, 511,512,2048,2049, \ldots
$$

To see that S is Q-sparse, take $p, q \in S$ with $p<q$. If $\{p, q\} \subset\left[2^{3 n-1}, 2^{3 n}\right]$ for some $n \in \mathbb{N}$, then $q / p \leq 2^{3 n} / 2^{3 n-1}=2$. Otherwise, $p \in\left[2^{3 n-1}, 2^{3 n}\right]$ and $q \in$ $\left[2^{3 m-1}, 2^{3 m}\right]$ for some $m, n \in \mathbb{N}$ with $m<n$. In this case, $q / p \geq 2^{3 n-1} / 2^{3 m} \geq$ $2^{3 n-1} / 2^{3(n-1)}=4$. It follows that $S \cap(2,4)=\emptyset$ and S is Q-sparse as claimed.

To show that S is not light, it suffices to show that a subsequence of $\langle | S_{n}|/ n\rangle_{n=1}^{+\infty}$ has a positive limit. Indeed,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|S_{2^{3 n}}\right|}{2^{3 n}} & =\lim _{n \rightarrow \infty} \frac{n+\sum_{k=0}^{n-1} 2^{3(n-k)-1}}{2^{3 n}} \\
& =\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} 2^{3(n-k)-1}}{2^{3 n}} \\
& =\frac{1}{2} \lim _{n \rightarrow \infty} \sum_{k=0}^{n-1}\left(\frac{1}{8}\right)^{k} \\
& =\frac{1}{2} \sum_{k=0}^{\infty}\left(\frac{1}{8}\right)^{k}=\frac{4}{7}>0 .
\end{aligned}
$$

5. CONCLUSION. The Q-sparseness of a set of natural numbers does not depend on the natural density of the set. The set S in the proof of Proposition 5 contains
arbitrarily long sequences of consecutive integers and is Q-sparse. On the other hand, according to Corollary 1 there exist ultra-log-light sets that are not Q-sparse.

REFERENCES

. S. Hedman, A First Course in Logic, Oxford University Press, New York, 2004.
2. D. Hobby and D. M. Silberger, Quotients of Primes, this Monthly 100 (1993) 50-52.
3. S. Marivani, On some particular dense sets, talk at the spring 2008 Southeastern Regional AMS meeting, Baton Rouge, LA.
4. I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley, New York, 1991.
5. J. E. Shockley, Introduction to Number Theory, Holt, Rinehart and Winston, New York, 1967.

The Least Prime in Certain Arithmetic Progressions

Juan Sabia and Susana Tesauri

Dirichlet's theorem states that, if a and n are relatively prime integers, there are infinitely many primes in the arithmetic progression $n+a, 2 n+a, 3 n+a, \ldots$ However, as stated in [3], the known proofs of this general result are not elementary (see [1, 10, 12], for example). Linnik $[4,5]$ proved that, if $1 \leq a<n$, there are absolute constants c_{1} and c_{2} so that the least prime p in such a progression satisfies $p \leq c_{1} n^{c_{2}}$, but his proof is not elementary either. There are several different proofs of Dirichlet's theorem for the particular case $a=1$ (see for example [2, 6, 9, 11]). In [7], moreover, the bound $p<n^{3 n}$ for the least prime satisfying $p \equiv 1(\bmod n)$ is given.

Our aim is to use an elementary argument, which also shows that there are infinitely many primes $\equiv 1(\bmod n)$, to prove that the least such prime lies below $\left(3^{n}-1\right) / 2$.

For $n=2$, the result is obvious, so let n be an integer, $n>2$. Let $\Phi_{n}(x)$ denote the nth cyclotomic polynomial. That is,

$$
\Phi_{n}(x)=\prod_{\substack{a=1 \\(a, n)=1}}^{n}\left(x-e^{2 \pi i a / n}\right)
$$

is the polynomial of degree $\phi(n)$ whose zeros are the primitive nth roots of unity. It is well known that $\Phi_{n}(x)$ is a monic, irreducible polynomial with integer coefficients.

Our proof is based on the following observation: For any integer b, the prime factors of $\Phi_{n}(b)$ are either prime divisors of n, or are $\equiv 1(\bmod n)$. Moreover, if $n>2$, any prime divisor of n can divide $\Phi_{n}(b)$ only to the exponent 1 ; that is, its square does not divide $\Phi_{n}(b)$.

