

The American Mathematical Monthly

ISSN: 0002-9890 (Print) 1930-0972 (Online) Journal homepage: http://www.tandfonline.com/loi/uamm20

Light Subsets of **N** with Dense Quotient Sets

Shawn Hedman & David Rose

To cite this article: Shawn Hedman & David Rose (2009) Light Subsets of N with Dense Quotient Sets, The American Mathematical Monthly, 116:7, 635-641, DOI: 10.1080/00029890.2009.11920981

To link to this article: https://doi.org/10.1080/00029890.2009.11920981

Published online: 13 Dec 2017.

Submit your article to this journal 🗹

Article views: 1

View related articles

Citing articles: 4 View citing articles 🕑

- P. Erdős, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932) 194–198; also available at http://www.math-inst.hu/~p_erdos/1932-01.pdf.
- _____, Ramanujan and I, in *Number Theory, Madras 1987*, Lecture Notes in Mathematics, no. 1395, Springer, Berlin, 1989; also available at http://www.iisc.ernet.in/academy/ resonance/Mar1998/pdf/Mar1998Reflections.pdf.
- S. Finch, *Mathematical Constants*, Encyclopedia of Mathematics and Its Applications, vol. 94, Cambridge University Press, Cambridge, 2003.
- 4. S. Laishram, On a conjecture on Ramanujan primes, 2009 (preprint).
- 5. E. Landau, *Handbuch der Lehre von der Verteilung der Primzahlen*, Chelsea, New York, 1974; 3rd (corrected) reprint of 1st ed., Teubner, Leipzig, 1909.
- 6. W. J. LeVeque, *Fundamentals of Number Theory*, Dover, Mineola, NY, 1996; reprint of the 1st ed., Addison-Wesley, Reading, MA, 1977.
- D. Ramakrishnan, Existence of Ramanujan primes for GL(3), in *Contributions to Automorphic Forms, Geometry, and Number Theory: A Volume in Honor of Joseph Shalika*, H. Hida, D. Ramakrishnan, and F. Shahidi, eds., The Johns Hopkins University Press, Baltimore, 2004, 711–718.
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc. 11 (1919) 181-182; also available at http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper24/page1.htm.
- 9. ——, *Collected Papers of Srinivasa Ramanujan*, G. H. Hardy, S. Aiyar, P. Venkatesvara, and B. M. Wilson, eds., commentary by B. C. Berndt, American Mathematical Society, Providence, RI, 2000.
- 10. P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer-Verlag, New York, 1989.
- 11. J. B. Rosser, The nth prime is greater than n ln n, Proc. London Math. Soc. 45 (1938) 21-44.
- 12. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, *Illinois J. Math.* **6** (1962) 64–94.
- 13. _____, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$, Math. Comp. 29 (1975) 243–269.
- J. Sondow, Sequence A104272: Ramanujan primes (2005), in The On-Line Encyclopedia of Integer Sequences, N. J. A. Sloane, ed., available at http://www.research.att.com/~njas/sequences/ A104272.
- 15. _____, Ramanujan prime—From MathWorld, A Wolfram Web Resource, E. W. Weisstein, ed., http: //mathworld.wolfram.com/RamanujanPrime.html.

209 West 97th Street, New York, NY 10025 jsondow@alumni.princeton.edu

Light Subsets of \mathbb{N} with Dense Quotient Sets

Shawn Hedman and David Rose

1. INTRODUCTION. Given a set *S* of natural numbers, we define the *quotient set* of *S* to be the set $Q(S) = \{\frac{a}{b} : a, b \in S\}$. Which sets of natural numbers have quotient sets that are dense in \mathbb{R}^+ ? This question was raised by D. Hobby and D. M. Silberger in [2], where they proved that the set of quotients of prime numbers is dense in \mathbb{R}^+ . We say that *S* is *Q*-dense if Q(S) is dense in \mathbb{R}^+ . In particular, if $Q(S) = \mathbb{Q}^+$, we say that *S* is *Q*-complete. A set of natural numbers is called *Q*-sparse if it is not *Q*-dense. At the conclusion of [2], Hobby and Silberger remark that *Q*-denseness and *Q*-sparseness are "indubitably related to the number theoretic and probabilistic densities of a sequence of positive integers," such as the densities discussed in Chapter 11 of [4]. We investigate this claim.

We make the following initial observation regarding Q-denseness.

Proposition 1. If $S \subset \mathbb{N}$ is *Q*-dense then so is $S \setminus F$ for any finite set *F*.

Proof. By induction, it suffices to show that S_0 is Q-dense, where $S_0 = S \setminus \{a\}$ for fixed $a \in S$. Let $D = \{\frac{a}{b} : b \in S\} \bigcup \{\frac{b}{a} : b \in S\}$. The 'D' stands not for 'dense' but for 'discrete.' Because $0 \notin \mathbb{R}^+$, D is closed and discrete and hence nowhere dense in \mathbb{R}^+ . Because $Q(S) = Q(S_0) \cup D$ is dense in \mathbb{R}^+ , so is $Q(S_0)$.

It follows that the properties of Q-denseness and Q-sparseness are determined by the tail of the set S. It therefore seems reasonable to consider the density of the set as defined in Chapter 11 of [4]. For each $n \in \mathbb{N}$, let $S_n = \{s \in S : s \leq n\}$.

Definition 1. The *natural density* of *S*, denoted $\delta(S)$, is defined as:

$$\delta(S) = \lim_{n \to \infty} \frac{|S_n|}{n}.$$

The natural density measures the tenuousness of an infinite subset of \mathbb{N} . For example, if *E* is the set of even numbers, then $\delta(E) = \frac{1}{2}$. More generally, given $b, d \in \mathbb{N}$, the arithmetic progression $A_{(b,d)} = \{b + dn : n \in \mathbb{N}\}$ has natural density $\delta(A_{(b,d)}) = \frac{1}{d}$. We say that a set $S \subset \mathbb{N}$ is *light* if $\delta(S) = 0$. As we shall show, lightness is neither a necessary nor a sufficient condition for *Q*-sparseness.

2. EXTREMELY LIGHT SETS. We generalize the notion of lightness as follows.

Definition 2. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be increasing and unbounded. A set $S \subset \mathbb{N}$ is *f*-light if $\lim_{n\to\infty} |S_n|/f(n) = 0$.

Definition 3. For each $p \in \mathbb{N}$, a set $S \subset \mathbb{N}$ is *p*-light if it is *f*-light for $f(x) = x^{1/p}$. So light sets are 1-light. If *S* is *p*-light for all *p*, then it is *ultra-light*.

In the examples and sections that follow, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to *x*.

Example 1. For each $p \in \mathbb{N}$, the set $A(p) = \{n^{p+1} : n \in \mathbb{N}\}$ is *p*-light but not (p + 1)-light. To see this, note that

$$0 \le \lim_{n \to \infty} \frac{|(A(p))_n|}{\sqrt[p]{n}} = \lim_{n \to \infty} \frac{\lfloor \frac{p+\sqrt{n}}{\sqrt[p]{n}} \rfloor}{\sqrt[p]{n}}$$
$$\le \lim_{n \to \infty} \frac{\frac{p+\sqrt{n}}{\sqrt[p]{n}}}{\sqrt[p]{n}} = \lim_{n \to \infty} \frac{1}{\frac{p(p+\sqrt{n})}{\sqrt{n}}} = 0,$$

whereas $\langle |(A(p))_n| / \sqrt[p+1]{n} \rangle_{n=1}^{\infty}$ has the constant nonzero subsequence

$$\left\langle \frac{|(A(p))_{n^{p+1}}|}{\sqrt{p+1}n^{p+1}}\right\rangle_{n=1}^{\infty} = \langle 1\rangle_{n=1}^{\infty}.$$

Example 2. For each a > 1, the set $B(a) = \{a^n : n \in \mathbb{N}\}$ is ultra-light but not ln-light. To see this, note that for each $p \in \mathbb{N}$,

$$0 \le \lim_{n \to \infty} \frac{|(B(a))_n|}{\sqrt[p]{n}} = \lim_{n \to \infty} \frac{\lfloor \log_a n \rfloor}{\sqrt[p]{n}}$$
$$\le \lim_{n \to \infty} \frac{\log_a n}{\sqrt[p]{n}} = \left(\frac{p}{\ln a}\right) \lim_{n \to \infty} \frac{\ln \sqrt[p]{n}}{\sqrt[p]{n}}$$

636

$$\leq \left(\frac{p}{\ln a}\right) \lim_{n \to \infty} \frac{1}{\sqrt[2p]{n}} = 0,$$

whereas

$$\lim_{n\to\infty}\frac{|B(a)_{a^n}|}{\ln a^n} = \lim_{n\to\infty}\frac{n}{n\ln a} = \frac{1}{\ln a} > 0.$$

Definition 4. For each $k \in \mathbb{N}$, a set $S \subset \mathbb{N}$ is *k*-log-light if it is *f*-light for

$$f(x) = \underbrace{\ln(\ln(\dots(\ln(x))))}_{k \text{ times}}.$$

So ln-light sets are 1-log-light. If S is k-log-light for all k, then it is ultra-log-light.

Example 3. The set $C = \{n^n : n \in \mathbb{N}\}$ is 1-log-light but not 2-log-light. To see this, note that $|C_n|^{|C_n|} \le n$ so that $|C_n| \ln |C_n| \le \ln n$ for each $n \in \mathbb{N}$. We have

$$0 \leq \lim_{n \to \infty} \frac{|C_n|}{\ln n} \leq \lim_{n \to \infty} \frac{|C_n|}{|C_n| \ln |C_n|} = \lim_{n \to \infty} \frac{1}{\ln |C_n|} = 0.$$

On the other hand,

$$\lim_{n \to \infty} \frac{|C_{n^n}|}{\ln(\ln n^n)} = \lim_{n \to \infty} \frac{n}{\ln n + \ln(\ln n)} = \infty.$$

Similarly, for each $k \in \mathbb{N}$, the set

$$C(k) = \{\underbrace{n^{n}}_{k+1 \text{ times}} : n \in \mathbb{N}\}$$

is *k*-log-light but not (k + 1)-log-light.

Example 4. Consider the Ackermann function $\alpha : (\mathbb{N} \cup \{0\})^2 \to \mathbb{N}$ defined inductively by:

$$\alpha(0, x) = x + 1, \alpha(n + 1, 0) = \alpha(n, 1), \text{ and } \alpha(n + 1, x + 1) = \alpha(n, \alpha(n + 1, x)).$$

The function $g(n) = \alpha(n, n)$ grows faster than any primitive recursive function (see [1, Section 7.1.2]). It follows that the range of g(n) (for $n \in \mathbb{N}$) is ultra-log-light.

Each set in Examples 1–4 is *Q*-sparse. In contrast, consider the set of primes. It follows from the prime number theorem that the primes are 1-light but not 2-light. Yet Hobby and Silberger demonstrated that the primes are *Q*-dense and therefore not *Q*-sparse. Recently, Syrous Marivani [3] has reportedly improved the Hobby-Silberger result by showing that the set of Dirichlet primes $P_{(a,b)}$ contained in the arithmetic sequence $a + b\mathbb{N}$, where $a, b \in \mathbb{N}$ are coprime, is *Q*-dense. Moreover, it follows from the prime number theorem for Dirchlet primes due to Vallee-Poussin [5] that $P_{(a,b)}$ is also light but not 2-light.

We now show that arbitrarily light Q-dense sets exist.

Theorem 1. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be increasing and unbounded. There exists a set $S \subset \mathbb{N}$ that is both *f*-light and *Q*-complete.

August–September 2009] NOTES

Proof. Define $g : \mathbb{N} \to \mathbb{N}$ by g(n) = y where *y* is the smallest natural number such that $f(y) > n^2$. Enumerate the positive rational numbers as $\mathbb{Q}^+ = \{q_i : i \in \mathbb{N}\}$. Construct the set $S = \{s_i : i \in \mathbb{N}\}$ by repeating the following step for each $n \in \mathbb{N}$: *Step n*: Choose s_{2n-1} and s_{2n} greater than g(2n) with $s_{2n-1}/s_{2n} = q_n$.

The last condition entails $Q(S) = \mathbb{Q}^+$, and so *S* is *Q*-complete. The first condition entails that $s_n > g(n)$ for each *n*. Fix $n \in \mathbb{N}$. For each $s_i \in S_n$ we claim that $i \le \sqrt{f(n)}$. Otherwise $f(n) < i^2$, which implies g(i) > n (by the definition of *g*). But then we have $s_i > g(i) > n$, contradicting $s_i \in S_n$. It follows that $|S_n| \le \sqrt{f(n)}$. We have:

$$\lim_{n \to \infty} \frac{|S_n|}{f(n)} \le \lim_{n \to \infty} \frac{\sqrt{f(n)}}{f(n)} = \lim_{n \to \infty} \frac{1}{\sqrt{f(n)}} = 0$$

so that S is f-light as we wanted to show.

Corollary 1. *There exist ultra-log-light sets that are not Q-sparse.*

Proof. Let *R* be the range of g(n) from Example 4 and let $f(x) = |\{y \in R : y < x\}|$. By Theorem 1, there exists $S \subset \mathbb{N}$ that is *f*-light and *Q*-dense.

3. RATIOS OF POWERS. Fix $a \in \mathbb{N}$ with a > 1 and recall the set $B(a) = \{a^n : n \in \mathbb{N}\}$ from Example 2. As was shown, B(a) is ultra-light. Because $Q(B(a)) \cap (\frac{1}{a}, a) = \{1\}, B(a)$ is *Q*-sparse. Now fix $b \in \mathbb{N}$ with b > 1 and gcd(a, b) = 1. Let $B(a, b) = B(a) \cup B(b)$. We prove that Q(B(a, b)) is dense in \mathbb{R}^+ . This demonstrates that the union of two *Q*-sparse sets need not be *Q*-sparse. It also provides concrete examples of ultra-light sets that are not *Q*-sparse. We verify the *Q*-denseness of B(a, b) in Section 3.2. We first establish a needed lemma.

3.1. Integer multiples of irrational numbers (mod 1). Let *x* be a real number. The fractional part of *x* is here denoted by $[x] = x - \lfloor x \rfloor$. We let D_x denote the set $\{[nx]: n \in \mathbb{N}\}$. Clearly, D_x is finite if *x* is rational. We prove that D_x is dense in (0, 1) if *x* is irrational.

Proposition 2. If x is irrational, then $[mx] \neq [nx]$ for distinct m and n in \mathbb{N} .

Proof. [mx] = [nx] implies mx - nx = k for some integer k. But this implies $x = \frac{k}{m-n}$ contradicting the irrationality of x.

Proposition 3. For $k \in \mathbb{N}$, k[x] < 1 implies k[x] = [kx].

Proof. If x is an integer, then k[x] = [kx] = 0. Otherwise, k[x] < 1 implies $0 < k(x - \lfloor x \rfloor) < 1$ which implies $k\lfloor x \rfloor < kx < k\lfloor x \rfloor + 1$. It follows that $\lfloor kx \rfloor = k\lfloor x \rfloor$. Now $k[x] = k(x - \lfloor x \rfloor) = kx - k\lfloor x \rfloor = kx - \lfloor kx \rfloor = [kx]$.

Lemma 1. If x is irrational, then D_x is dense in (0, 1).

Proof. We show that $D_x \cap (u, v) \neq \emptyset$ whenever 0 < u < v < 1. Take ϵ such that $0 < \epsilon < (v - u)$. The sequence $\{[nx]\}_{n=1}^{\infty}$ is bounded and therefore has a monotonic convergent subsequence. By Proposition 2, the terms of the sequence are distinct, and so this subsequence is either strictly increasing or strictly decreasing. Suppose first that $\{[nx]\}_{n=1}^{\infty}$ has a strictly increasing convergent subsequence. Then we can choose natural numbers m < n such that

$$0 < [nx] - [mx] < \epsilon.$$

By definition of [*nx*] and [*mx*]:

$$0 < (nx - \lfloor nx \rfloor) - (mx - \lfloor mx \rfloor) < \epsilon$$
$$0 < (n - m)x - (\lfloor nx \rfloor - \lfloor mx \rfloor) < \epsilon$$
$$(\lfloor nx \rfloor - \lfloor mx \rfloor) < (n - m)x < (\lfloor nx \rfloor - \lfloor mx \rfloor) + \epsilon.$$

Because $\epsilon < (v - u) < 1$, (n - m)x is between the consecutive integers $(\lfloor nx \rfloor - \lfloor mx \rfloor)$ and $(\lfloor nx \rfloor - \lfloor mx \rfloor) + 1$. Thus $\lfloor (n - m)x \rfloor = (\lfloor nx \rfloor - \lfloor mx \rfloor)$, and so we have:

$$0 < [(n-m)x] = (n-m)x - \lfloor (n-m)x \rfloor$$
$$= (n-m)x - (\lfloor nx \rfloor - \lfloor mx \rfloor)$$
$$= [nx] - [mx] < \epsilon.$$

Because $\epsilon < (v - u)$, there exists an integer k > 0 so that u < k[(n - m)x] < v. By Proposition 3, k[(n - m)x] = [k(n - m)x]. We have $[k(n - m)x] \in D_x \cap (u, v)$ as we wanted to show.

Now suppose that the monotonic convergent subsequence of $\{[nx]\}_{n=1}^{\infty}$ is strictly decreasing. Then the same argument shows that D_{-x} is dense in (0, 1). But D_{-x} is the image of D_x under the homeomorphism $x \mapsto 1 - x$. Since D_{-x} is dense in (0, 1), so is D_x .

Corollary 2. For irrational x and $N \in \mathbb{N}$, the set $D_{(x,N)} = \{[nx]: n > N\}$ is dense in (0, 1).

Proof. This follows from Lemma 1 and the fact that $D_x \setminus D_{(x,N)}$ is finite.

3.2. B(a, b) is not *Q*-sparse for co-prime *a* and *b*.

Theorem 2. If gcd(a, b) = 1 and a > 1 and b > 1, then Q(B(a, b)) is dense in \mathbb{R}^+ .

Proof. Let $x = \log_a(b)$. This is an irrational number. Otherwise, if $x = \frac{n}{m}$ for $m, n \in \mathbb{N}$, then $a^n = b^m$. This contradicts gcd(a, b) = 1.

Let $L = \{nx - m : m, n \in \mathbb{N}\}$. Because $a^{nx-m} = b^n/a^m$, the image of L under the homeomorphism $x \mapsto a^x$ is a proper subset of Q(B(a, b)). So to show that Q(B(a, b)) is dense in \mathbb{R}^+ , it suffices to show that L is dense in \mathbb{R} .

Fix *r* and ϵ in \mathbb{R} with $\epsilon > 0$. To show that *L* is dense in \mathbb{R} , it suffices to find *m*, $n \in \mathbb{N}$ with $|(nx - m) - r| < \epsilon$.

Fix $N \in \mathbb{N}$ so that $N > \frac{r+1}{x}$. By Corollary 2, the set $D_{(x,N)} = \{[nx]: n > N\}$ is dense in (0, 1). So there exists n > N so that $|[nx] - [r]| < \epsilon$. We have $|(nx - \lfloor nx \rfloor) - (r - \lfloor r \rfloor)| < \epsilon$ and so $|nx - (\lfloor nx \rfloor - \lfloor r \rfloor) - r| < \epsilon$.

 $(r - \lfloor r \rfloor)| < \epsilon$ and so $|nx - (\lfloor nx \rfloor - \lfloor r \rfloor) - r| < \epsilon$. Let $m = (\lfloor nx \rfloor - \lfloor r \rfloor)$. Because $n > \frac{r+1}{x}$, we have $m \ge 1$. Now $(nx - m) \in L$ and $|(nx - m) - r| < \epsilon$ as we wanted to show.

Corollary 3. The natural numbers can be partitioned as $\mathbb{N} = \bigsqcup_{i=1}^{\infty} N_i$ where each N_i is *Q*-dense and $Q(N_i) \cap Q(N_j) = \emptyset$ for $i \neq j$.

Proof. Let $N_1 = B(2, 3) \cup \{1\}$. For i > 1, let $N_i = B(a_i, b_i)$, where a_i is least such that $a_i \notin N_j$ for j < i and b_i is such that $gcd(a_i, b_i) = 1$ and $b_i \notin N_j$ for j < i.

August–September 2009]

NOTES

4. NON-LIGHT SETS. If a set $S \subset \mathbb{N}$ is not light, then either $\lim_{n\to\infty} |S_n|/n > 0$ or else this limit does not exist. We show that S is necessarily Q-dense in the first case but not the second.

Proposition 4. If $\delta(S) = \ell > 0$, then Q(S) is dense in \mathbb{R}^+ .

Proof. Fix $q \in \mathbb{Q}^+$ and $\epsilon > 0$. Enumerate S as an increasing sequence $\langle s_i : i \in \mathbb{N} \rangle$. It suffices to find $s_n, s_m \in S$ with $|\frac{s_m}{s_n} - q| < \epsilon$. According to Theorem 11.1 of [4], $\lim_{n \to \infty} n/s_n = \lim_{n \to \infty} |S_n|/n = \ell$. Since $\ell > \ell$

0, there exists N so that n, m > N implies

$$\left|\frac{(n/s_n)}{(m/s_m)}-1\right|<\frac{\epsilon}{q}.$$

Choose n, m > N so that m/n = q. We have:

$$\left|\frac{n}{s_n}\frac{s_m}{m} - 1\right| = \left|\frac{s_m/s_n}{q} - 1\right| < \frac{\epsilon}{q}$$

which implies $|s_m/s_n - q| < \epsilon$.

Proposition 5. There exists a non-light Q-sparse set.

Proof. Consider $S = \mathbb{N} \cap \left(\bigcup_{n=1}^{\infty} [2^{3n-1}, 2^{3n}] \right)$. The first several terms of this set are

4, 5, 6, 7, 8, 32, 33, ..., 63, 64, 256, 257, ..., 511, 512, 2048, 2049, ...

To see that S is Q-sparse, take $p, q \in S$ with p < q. If $\{p, q\} \subset [2^{3n-1}, 2^{3n}]$ for some $n \in \mathbb{N}$, then $q/p \leq 2^{3n}/2^{3n-1} = 2$. Otherwise, $p \in [2^{3n-1}, 2^{3n}]$ and $q \in \mathbb{N}$ $[2^{3m-1}, 2^{3m}]$ for some $m, n \in \mathbb{N}$ with m < n. In this case, $q/p \ge 2^{3n-1}/2^{3m} \ge 2^{3m-1}/2^{3m}$ $2^{3n-1}/2^{3(n-1)} = 4$. It follows that $S \cap (2, 4) = \emptyset$ and S is Q-sparse as claimed.

To show that S is not light, it suffices to show that a subsequence of $\langle |S_n|/n \rangle_{n-1}^{+\infty}$ has a positive limit. Indeed,

$$\lim_{n \to \infty} \frac{|S_{2^{3n}}|}{2^{3n}} = \lim_{n \to \infty} \frac{n + \sum_{k=0}^{n-1} 2^{3(n-k)-1}}{2^{3n}}$$
$$= \lim_{n \to \infty} \frac{\sum_{k=0}^{n-1} 2^{3(n-k)-1}}{2^{3n}}$$
$$= \frac{1}{2} \lim_{n \to \infty} \sum_{k=0}^{n-1} \left(\frac{1}{8}\right)^k$$
$$= \frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{1}{8}\right)^k = \frac{4}{7} > 0.$$

5. CONCLUSION. The Q-sparseness of a set of natural numbers does not depend on the natural density of the set. The set S in the proof of Proposition 5 contains

640

arbitrarily long sequences of consecutive integers and is Q-sparse. On the other hand, according to Corollary 1 there exist ultra-log-light sets that are not Q-sparse.

REFERENCES

- 1. S. Hedman, A First Course in Logic, Oxford University Press, New York, 2004.
- 2. D. Hobby and D. M. Silberger, Quotients of Primes, this MONTHLY 100 (1993) 50-52.
- S. Marivani, On some particular dense sets, talk at the spring 2008 Southeastern Regional AMS meeting, Baton Rouge, LA.
- I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley, New York, 1991.
- 5. J. E. Shockley, Introduction to Number Theory, Holt, Rinehart and Winston, New York, 1967.

Department of Mathematics and Computer Science, Florida Southern College, Lakeland, FL 33801 shedman@flsouthern.edu drose@flsouthern.edu

The Least Prime in Certain Arithmetic Progressions

Juan Sabia and Susana Tesauri

Dirichlet's theorem states that, if a and n are relatively prime integers, there are infinitely many primes in the arithmetic progression n + a, 2n + a, 3n + a, However, as stated in [3], the known proofs of this general result are not elementary (see [1, 10, 12], for example). Linnik [4, 5] proved that, if $1 \le a < n$, there are absolute constants c_1 and c_2 so that the least prime p in such a progression satisfies $p \le c_1 n^{c_2}$, but his proof is not elementary either. There are several different proofs of Dirichlet's theorem for the particular case a = 1 (see for example [2, 6, 9, 11]). In [7], moreover, the bound $p < n^{3n}$ for the least prime satisfying $p \equiv 1 \pmod{n}$ is given.

Our aim is to use an elementary argument, which also shows that there are infinitely many primes $\equiv 1 \pmod{n}$, to prove that the least such prime lies below $(3^n - 1)/2$.

For n = 2, the result is obvious, so let *n* be an integer, n > 2. Let $\Phi_n(x)$ denote the *n*th cyclotomic polynomial. That is,

$$\Phi_n(x) = \prod_{\substack{a=1\\(a,n)=1}}^n \left(x - e^{2\pi i a/n} \right)$$

is the polynomial of degree $\phi(n)$ whose zeros are the primitive *n*th roots of unity. It is well known that $\Phi_n(x)$ is a monic, irreducible polynomial with integer coefficients.

Our proof is based on the following observation: For any integer *b*, the prime factors of $\Phi_n(b)$ are either prime divisors of *n*, or are $\equiv 1 \pmod{n}$. Moreover, if n > 2, any prime divisor of *n* can divide $\Phi_n(b)$ only to the exponent 1; that is, its square does not divide $\Phi_n(b)$.

August–September 2009]