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Introduction to Fermat's Last Theorem 

David A. Cox* 

The announcement last summer of a proof of Fermat's Last Theorem was an 
exciting event for the entire mathematics community. This article will discuss the 
mathematical history of Fermat's Last Theorem (which we will abbreviate through- 
out as FLT), broken up into the following periods: 

1. Diophantus to Euler (250-1783 A.D.) 
2. Euler to Frey (1783-1982 A.D.) 
3. Frey to Wiles (1982-1993 A.D.) 

We will give only an introduction to the story of Fermat's Last Theorem, and our 
account is by no means definitive. Many of the more technical terms are not 
defined completely and the few proofs that appear are only sketched. On the other 
hand, I hope that the article succeeds in conveying the flavor of this truly 
wonderful mathematics. 

1. DIOPHANTUS TO EULER. Our history of FLT starts around 250 A.D. with 
Diophantus, whose Arithmetica considered many problems in elementary number 
theory. Consider Problem 8 from Book II, which asks "to divide a given square 
number into two squares" ([10], p. 144). Diophantus' solution is as follows: Let the 
given square be 16, let x2 be one of the required squares and (2x - 4)2 the other 
square. Therefore, we must satisfy x2 + (2x - 4)2 = 16, which implies 

x2 + 4X2 _ 16 =1 5X2 = 16x x = 16/5. 

Hence the required squares are 256/25 and 144/25. 
We can observe two things about this problem. First, solutions are presumed to 

be rational. We neither restrict to only integer solutions nor generalize to real 
solutions. Second, we care only about finding one solution to a given problem; if 
we find one, we are happy and move on. 

The Arithmetica was one of the last Greek mathematical works translated into 
Latin; this occured in 1575. Fermat (1601-1665) had a copy of Bachet's translation 
of 1621 and made a series of intriguing annotations in its margins. Sometime in the 
late 1630's, while thinking about the problem given above, he added the famous 
words in the margin: 

"On the other hand, it is impossible to separate a cube into two cubes, or a 
biquadrate into two biquadrates, or generally any power except a square into 

* This article is based on a lecture given at the 1993 Smith College Regional Geometry Institute. 
This audience included high schools teachers, undergraduates, graduate students and researchers in 
discrete and computational geometry. I would like to thank Thomas Colthurst for transcribing the 
lecture, and I am grateful to my colleagues who pointed out errors in earlier versions of the manuscript. 
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two powers with the same exponent. I have discovered a truly marvellous 
proof of this, which however the margin is not large enough to contain." 
([10], pp. 144-145) 

Hence the basic claim of Fermat's Last Theorem is that the equation x' + yf 
= z has no solutions when x, y, z are nonzero integers and n > 2. Generations 
of mathematical historians have debated over whether Fermat really did have a 
proof, though many experts doubt that he did. For one thing, the equation 
xn + yn = zn was atypical for Fermat-the vast majority of the other equations he 
studied dealt with exponents < 4. Also, in his correspondence, he only stated FLT 
for the exponent n = 3. As for Fermat's "marvellous proof," it probably used the 
technique of infinite descent. His descent argument for n = 4 is actually known: it 
can be found in Fermat's proof that the area of a right triangle with integral sides 
cannot be a square. This proof is given in one of his marginal notes, although even 
here, Fermat complains that there isn't enough room to give the proof "with all 
detail" ([10], p. 293). It seems likely that Fermat thought that his proofs for n = 3 
and 4 generalized, and they almost certainly didn't. 

So, what happened after Fermat? In 1670, his marginal notes were published by 
his son, and some of his letters appeared in Wallis' Opera Mathematica. In 1729, 
Goldbach wrote Euler and mentioned some of Fermat's results. This got Euler, 
only 22 at the time, thinking about number theory. Three years later, Euler wrote 
his first paper on number theory, disproving a conjecture of Fermat's on primes of 
the form 22 + 1. For the next fifty years, Euler proved many of Fermat's 
conjectures and in so doing, transformed number theory from a collection of 
miscellaneous facts and results into an organized field at the very center of 
mathematics. 

Here is an example of what Euler did. In Problem 17 of Book VI of the 
Arithmetica (Problem 19 in Bachet's numbering), Fermat had written in the 
margin, "Can one find in whole numbers a square different fro'm 25, when 
increased by 2, becomes a cube? ... [The answer involves] the doctrine of whole 
numbers, which is assuredly very beautiful and very subtle..." ([6], p. 269). In 
modern terms, Fermat is claiming that the only integer solutions to x3 = y2 + 2 
are given by (x, y) = (3, ? 5). You can see how the emphasis is different from 
Diophantus-Fermat is looking for all solutions, and he recognizes that asking for 
integer solutions (rather than rational ones) is a question of independent interest. 

To prove Fermat's claim, Euler ([4], Part II, ?193) uses numbers of the form 
a + bV- 2, with a, b integers. First observe 

x3 = y2 + 2 = (y + -2)(y - -). 

One can show that y + - 2 and y - are relatively prime,and since their 
product is a cube, each of them must also be a cube. Thus there is a number p + 
q - 2 such that 

y + _-_2 =(p+q -2) =p3 - 6pq2 +(3p3q - 2q 
1 = 3p2q - 2q3 = q(3p2 - 2q2). 

The last equation implies p = + 1 and q = 1. Substituting this in, we get y = p3 
- 6pq2 = ?5 and x = 3, as claimed. 

This proof, while elegant, is incomplete, for we do not know that numbers of the 
form a + b - 2 have unique factorization, or even for that matter, primes 
(although it is relatively easy to prove that the numbers a + b -2 have these 
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properties). There are several reasons why this example is important: 

* First, it reminds us that there are lots of diophantine equations besides just 
FLT, and what we really want is a method for dealing with as many of them as 
possible. 

* Second, it shows that properties of integers (such as unique factorization) can 
apply in more general situations, and it illustrates how a result in one context 
(the integers) can be proved by working in a more general context (numbers of 
the form a + -2). 

* Finally, the equation y2 = -2 is an example of an elliptic curve. Elliptic 
curves will play a crucial role in the final proof of FLT. 

2. EULER TO FREY. This section is only a sketch of more than two hundred 
years of beautiful and wonderful number theory. For more information on the 
work on FLT done during this period, we warmly recommend both Edwards' 
Fermat's Last Theorem [3] and Ribenboim's 13 Lectures on Fermat's Last Theorem 
[21]. (Precise references for results mentioned in this section can be found in these 
books.) 

Before we begin, first observe that it suffices to prove FLT for n = 4 (done by 
Fermat) and for n an odd prime (since we can factor the exponent). We can also 
assume that x, y, z are nonzero relatively prime integers (because we can cancel 
common factors). That being said, here are some of the highlights of the 19th 
century work on FLT: 

* By the early 1800s, all of Fermat's problems were solved except for FLT (thus 
justifying the name, Fermat's Last Theorem). 

* 1816-The French Academy announces a prize for a solution to FLT. 
* In the 1820's Sophie Germain shows that if p and 2p + 1 are prime, then 
xP + yP = zP has no solution with p + xyz. This is the so-called Case I of 
FLT. (Case II is where p Ixyz and is usually regarded as being much harder.) 

* 1825-Dirichlet and Legendre prove FLT for n = 5. 
* 1832-Dirichlet, after trying to prove it for n = 7, proves FLT for n = 14. 
* 1839-Lame proves FLT for n = 7. 
* 1847-Lame and Cauchy present false proofs of FLT for general n. 
* 1844-1847-Kummer's work on FLT. 

Let us describe Kummer's work on FLT in more detail. Kummer (and Cauchy 
and Lame) started, a la Euler, by factoring the right hand side of the FLT equation 
as 

xP = zP yP = (Z _ y)(z _ -y)(z - {2y) ... (Z _ {p-ly) 

where - e2'ri-/P cos(27r/p) + i sin(27r/p) is a pth root of unity and satisfies 
gP = 1. In general, working with roots of unity will require us to use numbers of 
the form 

ao + al; + ** +ap_,P-1, ao,..., ap-, E Z, 

which are called cyclotomic integers. But a problem arises when unique factoriza- 
tion, one of our main tools, fails for the cyclotomic integers. As Kummer discov- 
ered in 1844, this first occurs for p = 23 (and in fact, unique factorization fails for 
all bigger primes as well). 

Kummer's solution to this was twofold. First, he introduced a generalization of 
cyclotomic integers, called ideal numbers, which make up for the lack of unique 
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factorization. Second, he defined the class number h, which measures how badly 
unique factorization fails. 

Here is a summary of Kummer's results: 

* 1847-Theorem: FLT holds for p if p + h (such p are called regular primes). 
* 1847-Theorem: p is regular iff p doesn't divide the numerator of the 
Bernoulli numbers B2,B4, .. ., Bp_3. 
We can define the Bernoulli numbers by the power series 

x X) B 

ex -1 n=1 n! 

A corollary of this result is that for p < 100, only 37, 59 and 67 are irregular. 
* 1850-The French Academy offers a second prize for a solution to FLT. 
* 1856-At Cauchy's suggestion, the Academy withdraws the prize and then 

awards a medal to Kummer. 
* 1857-Kummer develops complicated criteria for proving FLT for certain 

irregular primes. There are some gaps in his proofs which are later filled in by 
Vandiver in the 1920s. These results establish FLT for p < 100. 

The above history makes a wonderful story about how FLT inspired one of the 
greatest inventions in number theory, but the story is unfortunately false. Kummer 
was actually not trying to prove FLT, but something called a reciprocity theorem. 
Reciprocity theorems have their origins in Fermat's study of equations like 
p = X2 + y2 and p = x2 + 2y2, where p is a prime. In trying to understand these 
results, Euler, Lagrange, Legendre and Gauss created the theory of quadratic 
forms and proved the law of quadratic reciprocity. Later, Gauss, Abel and Jacobi 
formulated versions of cubic and biquadratic reciprocity, and Kummer and 
Eisenstein made the first attempts at higher reciprocity laws. Cyclotomic integers 
and ideal numbers came about primarily from Kummer's attempts to prove these 
higher reciprocity laws. In turn, these concepts not only had something interesting 
to say about FLT, but they also made significant contributions toward the develop- 
ment of class field theory and abstract algebra (we use the terminology "ideal of a 
ring" because of Kummer's "ideal numbers"). 

Here are some highlights of the history of FLT after Kummer: 

* 1908-The Wolfskehl prize for a solution to FLT is announced. Later 
inflation in the German mark reduces the value of this prize considerably, but 
does not reduce the flow of crank solutions submitted. 

* 1909-Wieferich proves if xP + yP = zP and p + xyz (Case I of FLT), then 
2p-1 --1 mod p2. This is a strong congruence which is particularly easy to 
check on a computer. 

* 1953-Inkeri proves that if xP + yP = zP and x < y < z, then x > ((2p3 + 
p)/log(3p))P in Case I and x > p3P-4 in Case II. 

* 1971-Brillhart, Tonascia and Weinberger show that Case I of FLT is true for 
all primes less than 3 * 109. 

* 1976-Wagstaff shows that FLT is true for all primes less than 125,000. 

These results imply that any counterexample to FLT must involve p 2 125,003 
and z > y > x > (125,003)375??05 = 4.5 * 101,911,370. (In 1992, as a byproduct of 
other computations, the lower bound on the exponent was raised to p > 4,000,000 
-see [2].) 
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We should also mention that the Fermat equation x' + yf = zn has been 
studied in many other contexts, including polynomials, entire functions and matri- 
ces (see [21] and, for a recent proof of the polynomial case, [18]). 

3. FREY TO WILES. In 1983, Faltings [4] proved the Mordell Conjecture, which 
implies that a polynomial equation with rational coefficients Q(x, y) = 0 has only 
finitely many rational solutions when the curve has genus > 2 (for a definition of 
genus, see the sidebar "The genus of an algebraic curve"). Since x' + yf = 1 has 
genus ? 2 for n > 4, there are only finitely many rational solutions by the Mordell 
Conjecture. Then, clearing denominators, it follows easily that xn + yn = zn has 
only finitely many relatively prime integer solutions. 

The genus of an algebraic curve 

The genus of a curve given by a polynomial equation p(x, y) = 0 of degree n can 
be defined in a variety of ways. When the equation is sufficiently smooth (which is 
true for the Fermat curve x' + yf = 1), then the genus is g = (n - 1)(n - 2)/2. 
This is 2 2 when n 2 4. 
Topologically, the solutions of p(x, y) = 0 over the complex numbers form a 
compact Riemann surface minus a finite set of points, and then the genus is just 
the usual genus of this compact real 2-dimensional manifold. 

Analytically, a Riemann surface is a compact complex 1-dimensional manifold, and 
one can define the notion of a holomorphic 1-form. Then the genus is the 
maximum number of linearly independent holomorphic 1-forms on the surface. 

For example, the Riemann sphere has genus zero, so that there are no 
holomorphic 1-forms, while the elliptic curve = Ax3 + Bx2 + Cx + D has 
genus 1, and up to a constant, dx/y is the only holomorphic 1-form. 

This may not seem so useful, since we want to show that the number of 
solutions is actually zero. But Granville [9] and Heath-Brown [11], aided by an 
observation of Filaseta, used the above finiteness result to show that FLT holds for 
"most" exponents, in the sense that if you look at all exponents-prime and 
composite-from 3 to n, the percentage where FLT could fail approaches zero as 
n increases (see [28] for the details). Also, Adelman and Heath-Brown [1] showed 
that Case I of FLT was true for infinitely many prime exponents. 

For us, the Mordell Conjecture is interesting because it shows how a general 
conjecture in number theory can have some consequences concerning FLT. Also, 
in proving the Mordell Conjecture, Faltings used the machinery of modern 
algebraic geometry, which had been developing since the 1950's. 

By the end of the 1980's, there were several conjectures in number theory 
which, if proved, would imply FLT, though sometimes only for sufficiently large 
exponents (see the sidebar "Conjectures that imply Fermat's Last Theorem"). This 
showed that FLT was not an isolated oddity, but rather was intimately connected- 
to other parts of number theory. People were especially excited in 1988, when 
Miyaoka gave a lecture in Bonn in which he stated one of these conjectures, the 
arithmetic Bogomolov-Miyaoka-Yau inequality, as a theorem. This would have 
proved FLT for all large primes p (without saying explicitly what "large" meant). 
In the days following his lecture, there was much fanfare in the press, and it was 
rather disappointing when a week later an error was found in the argument. 
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Conjectures that imply Fermat's Last Theorem 

By the late 1980's, there were several conjectures in number theory which, if 
proved, would imply FLT, at least for large exponents: 

Diophantine Geometry. The following conjectures in diophantine geometry would 
imply FLT for all sufficiently large exponents: 

. The abc Conjecture states that if a, b, c are relatively prime integers with 
a + b = c, then max( I a l, l b , I c I) is bounded in terms of the primes dividing abc. 

. Szpiro's Conjecture relates the minimal discriminant to the conductor of an 
elliptic curve. These terms are discussed in the sidebar entitled "Invariants of 
the Frey curve". 

. Vojta's Conjecture concerns heights of points (relative to the canonical class) of 
a curve defined over the integers. 

Precise statements of these conjectures (and the relations among them) can be 
found in Lang's survey article [181. 

Arithmetic Surfaces. The Bogomolov-Miyaoka-Yau inequality for arithmetic sur- 
faces relates various invariants of a curve defined over the integers. This inequality 
is an arithmetic analog of a well known inequality for complex surfaces. By Parshin 
[20] and Vojta (Appendix to [161), this conjecture implies versions of the above 
diophantine conjectures strong enough to prove FLT for all large exponents. 

Elliptic Curves. The Taniyama-Shimura Conjecture states that all elliptic curves 
over the rational numbers are modular (a more precise statement of the conjecture 
is in the body of the article). As we will explain, the work of Frey, Serre and Ribet 
shows that this conjecture implies FLT for all exponents. 

Of these conjectures, the one ultimately most important for FLT is the 
Taniyama-Shimura Conjecture, which asserts that all elliptic curves over Q are 
modular (this term will be defined below). The full story of this conjecture goes 
back to Jacobi and Riemann, but we will begin our account with the work of 
Gerhard Frey from 1982 to 1986 (see [7] and [8]). Frey showed that nontrivial 
solutions to FLT give rise to very special elliptic curves, which we shall call Frey 
curves. His basic insight was that Frey curves were so special that they couldn't be 
modular. Hence, if the Taniyama-Shimura Conjecture were true, Frey curves 
couldn't exist, and FLT would follow. 

If aP + bP = cP is a solution to FLT, then the associated Frey curve is 

y2 = x(x - aP)(x + bP). 

As usual, we assume a, b, c are nonzero relatively prime integers and p is an odd 
prime. This is an elliptic curve over the rational numbers Q, similar to the equation 
y2 = x3 - 2 considered by Fermat. In general, an elliptic curve over Q is given by 
an equation of the form 

y2 =AX3 + BX2 + Cx + D, 

where A, B, C, D are rational and the cubic polynomial in x on the right hand 
side of the equation has distinct roots. Elliptic curves are a large and important 
part of modern number theory. 
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Actually, we have to be a bit careful when constructing the Frey curve. A 
solution aP + bP = cP gives rise to solutions bP + aP = cP and aP + (-c)P = 
(-b)P (since p is odd). From here it is easy to rearrange the solution so that b is 
even and a -1 mod 4. This is needed in order that the Frey curve be semistable 
(this concept will be discussed below). For technical reasons, we will also assume 
thatp > 3. 

Although Frey had published a paper about Frey curves in 1982 [8], things 
didn't get really interesting until 1985, when Frey tried to prove that the 
Taniyama-Shimura Conjecture implies FLT. But his proof had some serious gaps. 
Several people tried to fix Frey's argument, and it was Jean-Pierre Serre [24] who 
saw that a special version of a conjecture he made on level reduction for modular 
Galois representations would fill the gap. Hence we may credit Frey and Serre 
with showing that FLT follows from Taniyama-Shimura and the special level 
reduction conjecture made by Serre. Versions of this argument can be found in [7] 
and [22] and one should also consult Serre's article [25]. 

Then, in 1986, Ken Ribet made significant progress along this route to FLT by 
proving this version of Serre's conjecture, and his proof eventually appeared in 
[22]. Thus FLT (for all primes p) was now a consequence of the Taniyama-Shimura 
Conjecture! Inspired by this development, Andrew Wiles began to work on 
Taniyama-Shimura, and seven years later, he presented a proof on June 23, 1993 
that the conjecture is true for semistable elliptic curves, which (as we will see 
below) is good enough to prove FLT. Wiles' argument is not easy-the manuscript 
containing the proof is over 200 pages long. But many people in the mathematical 
community are confident that the proof will hold up under careful scrutiny. For a 
broad outline of Wiles' argument, see Ribet's article [23] (this article also has some 
useful references). 

One interesting observation is that Frey was not the first to discover the Frey 
curve. On page 262 of [12], Hellegouarch writes down the Frey curve for a solution 
to FLT of exponent 2ph. Frey curves also appear implicitly as part of the 
correspondence between Fermat curves and modular curves considered by Kubert 
and Lang [15]. But Frey was clearly the first to suspect that the Frey curve couldn't 
exist because of the Taniyama-Shimura Conjecture. 

To explain the Taniyama-Shimura Conjecture, we first need to define the 
concept of modular function. 

Definition. A function f(z) on the upper half plane {z = x + iy: y > 0} is a 
modular function of level N if f(z) is meromorphic, even at the cusps (see the 
sidebar "The modular curve Xo(N)"), and for all integers a, b, c, d with ad - bc = 1 
and Nic, we have 

(az + b 
f I f(z). cz + d= 

Taniyama-Shimura Conjecture. Given an elliptic curve = Ax3 + Bx2 + Cx + D 
over Q, there are nonconstant modular functions f(z), g(z) of the same level N such 
that 

f(z)2 = Ag(Z)3 + Bg(Z)2 + Cg(z) + D. 

Thus the Taniyama-Shimura Conjecture says that an elliptic curve over Q can 
be parameterized by modular functions, or, as Mazur says in [19], it has a 
"hyperbolic uniformization." Such an elliptic curve is said to be modular. Wiles 
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The modular curve XO(N) 

In the text, we considered the transformations z -* (az + b)/(cz + d) of the 
upper half plane b = {z = x + iy: y > 0} associated to the group of matrices 

O(N) =(( b): a,b,c,d e Z,ad - bc = 1, Nlc}. 

This group acts on l with quotient b/10(N), and there is a compact Riemann 
surface XO(N) such that 

b/FO(N) = XO(N) - {finite set of points}. 

These points are the cusps and XO(N) is a modular curve of level N. (Other 
modular curves come from using different groups of matrices). 

A function f(z) is invariant under 1o(N) iff it descends to a function on j/F0(N). 
Thus the definition of modular function means that we have a meromorphic 
function on XO(N). Furthermore, the Taniyama-Shimura Conjecture asserts that if 
E is an elliptic curve over Q, then there is a surjective holomorphic map 
Xo(N) -+ E. 

As suggested in the text, a holomorphic 1-form on XO(N) is written F(z) dz, 
where F(z) is a cusp form of weight 2 and level N. It follows that the genus of 
XO(N) (see the sidebar "The genus of an algebraic curve") equals the dimension of 
the space of these cusp forms. 

It is known that XO(2) has genus zero (this follows by looking at the fundamental 
domain of 17o(2) acting on I). Hence there are no cusp forms of weight 2 and level 
2. This fact is used in the proof of FLT. 

The modular curves XO(N) play an important role in the theory of elliptic curves. 
Some basic facts about modular curves can be found in [14] and [26] (and other 
references can be found in these books). 

proved this conjecture for semistable elliptic curves. We should mention that our 
statement of the conjecture is very naive-some work is needed to show it is 
equivalent to the usual formulation (see the technical appendix to [19]). For a 
discussion of the conjecture and some of its history, see pages 130-135 of Lang's 
book [17]. At a more elementary level, Mazur's article "Number theory as gadfly" 
[19] gives a lovely introduction to the Taniyama-Shimura Conjecture. 

Besides modular functions, we also need to know about modular forms of 
weight 2. The easiest way to see how these arise is through elliptic integrals. An 
elliptic integral is an integral of the form 

dx 

J VAX3 + BX2 + Cx + D 

(Strictly speaking, this is only an elliptic integral of the first kind-there are many 
other types of elliptic integrals.) If y2 = Ax3 + Bx2 + Cx + D, then this integral is 
simply fdx/y. For a modular elliptic curve, we have x = f(z), y = g(z), and then 

dx df f'(z) dz 
- = -= = F(z) dz. 

y g g(z) 
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One can show that for a, b, c, d as in the definition of modular function, the above 
function F(z) transforms via the rule 

(az + b 2 

cz + d =(cz + d)F(z). 
We call F(z) a modular form of weight 2 and level N. When the modular 
parametrization is chosen correctly, the function F(z) has some remarkable 
properties. It is holomorphic and vanishes at the cusps, and for this reason is called 
a cusp form. In addition, F(z) is an eigen-form for the action of a certain Hecke 
algebra on the space of all cusp forms. So F(z) is a rather sophisticated object. 

The miracle is that F(z) is intimately connected to the curve y2 = Ax3 + 

Bx2 + Cx + D. Roughly speaking, one can reconstruct F(z) simply by knowing the 
number of solutions of the congruences Ax3 + Bx2 + Cx + D mod p for all 
primes p. Then the fact that F(z) is a cusp form of weight 2 and level N tells us 
some profound things about the elliptic curve. This is one reason why Taniyama- 
Shimura is such a wonderful conjecture-number theorists would be excited by its 
proof even if there were no connection to FLT. 

We can now sketch the argument of Frey and Serre which shows why FLT 
follows from Taniyama-Shimura and the level reduction conjecture of Serre. We 
begin with the FLT solution aP + bP = cP. As above, we will assume p > 3 is 
prime and a, b, c are relatively prime with b even and a -1 mod 4. We then get 
the Frey curve y2 = x(x - aP)(x + bP). 

The discriminant of a polynomial is the product of the squares of the differ- 
ences of its roots. For the cubic x(x - aP)(x + bV), the discriminant equals 

(aP - 0)2( - 0)2(aP - (_bP))2 = a2Pb2Pc2P 

Invariants of the Frey curve 

Suppose that we have the Frey curve y2 = x(x - aP)(x + bP) with our usual 
assumptions on a, b, c. Then we get the following invariants: 

. Besides the discriminant defined in the text, an elliptic 
curve over Q has a more subtle invariant called the 
minimal discriminant. The minimal discriminant of the 
Frey curve is A = 2-8a2Pb2pc2p. Since b is even and 
p > 5, this is still an integer. This differs from the 
discriminant because the discriminant depends on the 
particular equation defining the curve, while the minimal 
discriminant is intrinsic to the curve. 

. The conductor of the Frey curve is N= Hlllabcl The 
conductor is the most subtle of the invariants associated 
to an elliptic curve over Q. One can show that a modular 
elliptic curve is parametrized by modular functions whose 
level N equals the conductor of the curve. 

* The j-invariant of the Frey curve is j = 28(a2p + b2p + 
aPbp)3la2Pb2pC2p. The j-invariant classifies the curve up 
to isomorphism over the complex numbers. 

Precise definitions of these invariants can be found in Silverman's book [26] (see 
pp. 48, 224 and 361). The calculations for the Frey curve can be found in [7] and 
[25]. 
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since a, b, c is a solution to FLT. It is unusual for a discriminant to be a pure 2pth 
power-this is our first hint that the Frey curve is very special. 

Besides the discriminant of its equation, an elliptic curve over Q has a variety of 
invariants, including its minimal discriminant A, conductor N and j-invariant j. For 
the Frey curve, these invariants are given in the sidebar "Invariants of the Frey 
curve." In general, A, N and j give useful information about the elliptic curve. For 
instance, when the curve is modular, one can find a modular parametrization using 
modular functions of level N, where N is the conductor of the curve. This fact will 
play an important role in the proof below. 

We then have the following results about the Frey curve: 

Lemma 1. The Frey curve is semistable. 

Proof: We first need to define what semistable means. When a prime 1 divides the 
discriminant, two or possibly all three of the roots become congruent modulo 1. 
Roughly speaking, an elliptic curve is semistable if for all such primes 1, only two 
roots become congruent mod 1 (the definition is more complicated for the primes 2 
and 3). Thus, for primes bigger than 3, the Frey curve is semistable since the 
discriminant is a2Pb2pc2P and the roots are 0, aP and -bP, where aP and bP are 
relatively prime. More work is required to check semistability at 1 = 2 or 3, and 
when 1 = 2, the conditions b even, a -1 mod 4 and p > 3 are needed. For 
more details, see [7] and [25]. Q.E.D. 

Corollary (Wiles). The Frey curve is modular. 

Lemma 2. For every odd prime 1 dividing N, the j-invariant of the Frey curve can be 
written as j = 1-mP * q, where m is a positive integer and q is a fraction not involving 
1. (We say that the j-invariant is exactly divisible by l-mP in this case.) 

Proof: The j-invariant of the Frey curve is 

28(a2p + b2p + aPbP)3 28(C2p - bPcP) 
a Pb2pC2p - (abc)2P 

The power of 1 dividing the denominator is obviously a multiple of p, and since 
a, b, c are relatively prime, one sees that (c2p - bpCp)3 and (abc)2P are relatively 
prime. Since N is the product of the primes dividing abc, the lemma follows easily. 
The lemma fails for 1 = 2 because of the factor of 28 in numerator. Q.E.D. 

In the context of these three results-semistable modular elliptic curves whose 
j-invariants are exactly divisible by l-multiple of P for odd primes 1 dividing N-the 
level reduction conjecture of Serre applies for all odd primes dividing N (see [6] 
and [25] for the details of how this works). Serre's conjecture involves Galois 
representations and is rather technical (see [22] for a precise statement), though 
we will discuss its implications below. 

We can now prove Fermat's Last Theorem: 

Theorem. The equation xP + yP = zP has no solutions with a, b, c nonzero for p an 
odd prime. 
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Proof: Suppose there were a solution aP + bP = cP, with our usual assumptions 
about p and a, b, c. Then we have a Frey curve, which by the above corollary has a 
cusp form F of weight 2 and level N, where N is the conductor. The Frey curve 
also has a Galois representation p on the points of order p on the curve (we won't 
define precisely what this means). The cusp form F is linked to the representation 
p in an especially nice way. 

Serre's level reduction conjecture deals with the pair (p, F), and as we observed 
above, the hypotheses of the conjecture are satisfied for all odd primes 1 dividing 
N. In such a case, the conjecture asserts that there is a cusp form F' of weight 2 
and level N/l with 

F' F mod p 
and F' is also an eigen-form for the appropriate Hecke algebra (it takes some 
work to define what it means for modular forms to be congruent modulo p). This 
congruence means that F' is linked to p in the same way F was, except that F' 
has smaller level N/l. But then, if 1' is another odd prime dividing N, we can 
apply the level reduction conjecture to the pair (p, F') and get a cusp form F" 
with even smaller level N/ll', and then apply it again to (p, F"), etc. Eventually we 
get a cusp form F of weight 2 and level 2. (Note that 2 divides the conductor N 
since b is even.) Here is a diagram of the argument so far: 

solution of FLT -> Frey curve -> cusp form of level N 
> cusp form of level N/l 
> cusp form of level N/ll' 

> cusp form of level 2 

But it is well known that there are no cusp forms of weight 2 and level 2 (see the 
sidebar "The modular curve Xo(N)"). Hence the above diagram self-destructs, 
and Fermat's Last Theorem is proved! Q.E.D. 

This brings us to the end of the article, but certainly not to the end of the story. 
One thing missing from this account of Fermat's Last Theorem is the work of the 
many mathematicians who created the theories of elliptic curves, modular forms 
and Galois representations, and searched out the amazing connections between 
them. There is a lot more to say about the mathematics involved in the proof of 
Fermat's Last Theorem! 

For an introduction to some of this wonderful material, we recommend the 
books by Koblitz [13], Knapp [14] and Silverman [26]. At the undergraduate level, 
the recent book by Silverman and Tate [27] discusses elliptic curves and introduces 
the idea of a Galois representation. 

NOTE ADDED IN PROOF: As of December 1993, Wiles's manuscript has not yet been released. 
Ken Ribet notes that a delay like this is relatively normal in connection with a long manuscript. Most 
experts continue to believe in the fundamental correctness of the proof. 
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