A Note on an Identity of Ramanujan
Author(s): T. S. Nanjundiah
Source: The American Mathematical Monthly, Vol. 100, No. 5 (May, 1993), pp. 485-487
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2324305
Accessed: 18/08/2013 11:30

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

1. E. J. Remez, Sour une propriété de polynomes de Tchebysheff, Communicationes le l'Inst. des Sci., Kharkov 13 (1936), 93-95.
2. G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971.
3. T. Erdelyi, Inequalities for generalized polynomials and their applications, Ph.D. Thesis, University of South Carolina, 1989.
4. T. J. Rivlin, Chebyshev Polynomials, second edition, John Wiley \& Sons, Inc., New York, 1990.

Department of Mathematics,
University of Sofia,
Boul. James Boucher 5,
1126 Sofia, BULGARLA

A Note on an Identity of Ramanujan

T. S. Nanjundiah

In a forthcoming paper [1], Berndt and Bhargava have supplied a proof of this eye-catching identity of Ramanujan found in his third notebook [3, p. 386]: if $a d=b c$, then

$$
\begin{aligned}
& 64\left\{(b+c+d)^{6}-(a+c+d)^{6}-(a+b+d)^{6}+(a+b+c)^{6}\right. \\
& \left.\quad+(a-d)^{6}-(b-c)^{6}\right\} \\
& \times\left\{(b+c+d)^{10}-(a+c+d)^{10}-(a+b+d)^{10}\right. \\
& \left.\quad+(a+b+c)^{10}+(a-d)^{10}-(b-c)^{10}\right\} \\
& =45\left\{(b+c+d)^{8}-(a+c+d)^{8}-(a+b+d)^{8}\right. \\
& \left.\quad+(a+b+c)^{8}+(a-d)^{8}-(b-c)^{8}\right\}^{2}
\end{aligned}
$$

It figures also in their expository article [2] featuring a selected group of Ramanujan's results. Unfortunately, they have missed its simple proof and so its genesis by not noticing that it is built from two sets of sums:

$$
\begin{array}{llll}
u_{n}=\alpha_{1}^{n}+\beta_{1}^{n}+\gamma_{1}^{n}, & \alpha_{1}=b+c+d, & \beta_{1}=-(a+b+c), & \gamma_{1}=a-d, \\
v_{n}=\alpha_{2}^{n}-\beta_{2}^{n}+\gamma_{2}^{n}, & \alpha_{2}=a+c+d, & \beta_{2}=-(a+b+d), & \gamma_{2}=b-c
\end{array}
$$

By $\alpha_{j}+\beta_{j}+\gamma_{j}=0$, the underlying problem is to compute

$$
\omega_{n}=\alpha^{n}+\beta^{n}+\gamma^{n},
$$

where α, β and γ are the roots of the cubic

$$
z^{3}-p z+q=0 .
$$

It is simple to work out an easy special case of Newton's formulae for power sums of the roots of an algebraic equation. Indeed, the obvious recursion

$$
\omega_{n+3}-p \omega_{n+1}+q \omega_{n}=0
$$

with the initial values

$$
\omega_{-1}=\frac{p}{q}, \quad \omega_{0}=3, \quad \omega_{1}=0
$$

yields

$$
\begin{gathered}
\omega_{2}=2 p, \quad \omega_{4}=2 p^{2}, \\
\omega_{3}=-3 q, \quad \omega_{5}=5 p q, \quad \omega_{7}=-7 p^{2} q, \\
\omega_{6}=2 p^{3}+3 q^{2}, \quad \omega_{8}=2 p^{4}+8 p q^{2}, \quad \omega_{10}=2 p^{5}+15 p^{2} q^{2} .
\end{gathered}
$$

Form the cubic whose roots are α_{j}, β_{j} and γ_{j} :

$$
z^{3}-p_{j} z+q_{j}=0
$$

We have

$$
\begin{gathered}
p_{1}=(b+c+d)(a+b+c)+(a-d)^{2} \\
p_{2}=(a+c+d)(a+b+d)+(b-c)^{2} \\
p_{1}-p_{2}=3(b c-a d)
\end{gathered}
$$

Hence $p_{1}=p_{2}$ if and only if

$$
a d=b c .
$$

Assume this condition and set

$$
p_{1}=p_{2}=P, \quad \Delta=q_{1}^{2}-q_{2}^{2} .
$$

Now the $u_{n}=\omega_{n}\left(p_{1}, q_{1}\right)$ and the $v_{n}=\omega_{n}\left(p_{2}, q_{2}\right)$ given by the computed $\omega_{n}=$ $\omega_{n}(p, q)$ show that

$$
\begin{gathered}
u_{2}=v_{2}, \quad u_{4}=v_{4}, \\
u_{6}-v_{6}=-3 \Delta, \quad u_{8}-v_{8}=8 P \Delta, \quad u_{10}-v_{10}=15 P^{2} \Delta .
\end{gathered}
$$

So we have Ramanujan's ingenious parametric construction of equal sums of three nth powers ($n=2,4$), and Ramanujan's identity. Clearly, for both these results, the condition $a d=b c$ is crucial. Ramanujan must have been primarily looking for the first one because of its number-theoretic signifiance, the second being incidental and apparently the only one of its kind in this context.

For special choices of the parameters, the equal sums of three nth powers ($n=2,4$) constructed by Ramanujan may present the same terms! This happens, for instance, when

$$
a=b(c=d), \quad a=c(b=d), \quad b=0=d(a \neq 0), \quad c=0=d(a \neq 0)
$$

Barring such cases, the construction yields numbers expressible as sums of three nth powers ($n=2,4$) in two different ways. This observation, which we owe to a comment of the referee/editor, does not point to any flaw in the construction for which what really matters is its algebraic formulation.

I wish to thank Professor Bhargava for having kindly shown me the proof sheets of [1] and a preprint of [2].

REFERENCES

1. Bruce C. Berndt and S. Bhargava, A remarkable identity found in Ramanujan's third notebook, Glasgow Math. J. 34 (1992) 341-345.
2. Bruce C. Berndt and S. Bhargava, Ramanujan-for Lowbrows, this Monthly (to appear).
3. S. Ramanujan, Notebooks (2 vols.), Tata Institute of Fundamental Research, Bombay, 1957.

180, I Cross
Gangotri Layout-I Stage
Mysore-570 009
India

On an Identity of Daubechies

Doron Zeilberger

Tossing a coin (whose $\operatorname{Pr}($ head $)=p$) until reaching n heads or n tails and equating the probability, 1 , of finishing with the sum of the probabilities of all the possible final outcomes leads to

$$
\sum_{i=0}^{n-1}\binom{\dot{n}+i-1}{i} p^{n}(1-p)^{i}+\sum_{i=0}^{n-1}\binom{n+i-1}{i} p^{i}(1-p)^{n}=1
$$

which was proved in [1], (pp. 167-171) and [2] using Bezout's theorem and induction respectively. Rolling a k-faced die instead leads to the multivariate generalization

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{\substack{0 \leq \alpha_{j} \leq n-1 \\
j \neq i}} \frac{\left(\alpha_{1}+\cdots+\alpha_{i-1}+(n-1)+\alpha_{i+1}+\cdots+\alpha_{k}\right)!}{\alpha_{1}!\ldots \alpha_{i-1}!(n-1)!\alpha_{i+1}!\ldots \alpha_{k}!} \times \\
& \quad p_{1}^{\alpha_{1}} \cdots p_{i-1}^{\alpha_{i-1}} p_{i}^{n} p_{i+1}^{\alpha_{i+1}} \cdots p_{k}^{\alpha_{k}}=1
\end{aligned}
$$

provided $p_{1}+\cdots+p_{k}=1$.

REFERENCES

1. Ingrid Daubechies, Ten lectures on wavelets, SLAM, Philadelphia, 1992.
2. \qquad , Orthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41 (1988), 909-996.

Department of Mathematics

Temple University
Philadelphia, PA 19122
zeilberg@euclid.math.temple.edu

