On Some Irrational Decimal Fractions
Author(s): Norbert Hegyvari
Source: The American Mathematical Monthly, Vol. 100, No. 8 (Oct., 1993), pp. 779-780
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2324785
Accessed: 12/12/2014 12:14

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

On Some Irrational Decimal Fractions

Norbert Hegyvári

It is known that the decimal fraction

$$
\alpha=0.235711131719 \ldots
$$

is irrational, where the sequence of digits is formed by the primes in ascending order. In [1, Th. 138] there are two different proofs for this statement. The first uses a special case of the Dirichlet's theorem, namely: any arithmetical progression of the form $10^{s+1} k+1(k=1,2, \cdots)$ contains primes. In the second proof it is assumed that there is a prime between N and $10 N$ for every $N>0$, which is the special case of the Bertrand's Postulate. Similar proofs are found in [2].

In this article we will give a direct proof for this statement. We prove even more.

Theorem. Let $1 \leqslant a_{1}<a_{2}<\ldots$ be a sequence of integers for which $\sum_{i=1}^{\infty} 1 / a_{i}=\infty$. Then the decimal fraction $\alpha=0 \cdot\left(a_{1}\right)\left(a_{2}\right) \ldots\left(a_{n}\right) \ldots$ is irrational.

Since $\sum_{i=1}^{\infty} 1 / p_{i}=\infty$, where $p_{1}<p_{2}<\ldots$ is the sequence of primes, we immediately get the original version of the statement.

Definition. Let B be a block of digits $b_{1} b_{2} \ldots b_{s}$ with $s \geq 1$ and $0 \leq b_{i} \leq 9$ for $i=1,2, \ldots, s$. Let n be a positive integer $\sum_{i=0}^{k} c_{i} 10^{k-i}$ with $c_{0} \neq 0$. The integer n is said to contain the block of digits B if for some $j \geq 0$ we have $c_{i+j}=b_{i}$ for every $i=1,2, \ldots, s$. For example, the integer 1402857 contains the blocks 14 and 0285 (among others), but not the blocks 014 or 582.

Lemma. If $X=X\left(b_{1}, b_{2}, \ldots, b_{s}\right)$ denotes the sequence of positive integers not containing the block of digits $b_{1} b_{2} \ldots b_{s}$, then $\sum_{n \in X}^{\infty} 1 / n$ is convergent.

We mention that the Lemma is a generalization of a well-known exercise (see [1, Th 144]).

Proof of the Lemma: Let $s_{n}=1 / x_{1}+1 / x_{2}+\ldots 1 / x_{n}$ and let t be an integer for which $x_{t-1}<10^{s} \leq x_{t}$. Then we have

$$
s_{n}<1 / x_{1}+1 / x_{2}+\ldots+1 / x_{t}+10^{-s}\left(1 /\left[x_{t+1} / 10^{s}\right]+\ldots+1 /\left[x_{n} / 10^{s}\right]\right)
$$

We note that if $t<i \leq n$, then $\left[x_{i} / 10^{s}\right]$ is a member of X, say x_{j}. Also, since the block $b_{1} b_{2} \ldots b_{s}$ appears in at least one of 10^{s} consecutive integers, it follows that for any fixed x_{j} there are at most $10^{s}-1$ values of x_{j} such that $\left[x_{i} / 10^{s}\right]=x_{j}$, and we have

$$
s_{n}<\sum_{i=1}^{t} 1 / x_{i}+\left(10^{s}-1\right) 10^{-s} s_{n} \quad \text { or } \quad s_{n}<10^{s} \cdot \sum_{i=1}^{t} x_{i}
$$

which proves the lemma.

Proof of the Theorem: Assume that α is a rational number. Thus α is a periodic decimal, with a block of digits, say $b_{1} b_{2} \ldots b_{s}$, repeating endlessly perhaps after an initial first block. If B is a block of 1 's, define $c_{1} c_{2} \ldots c_{2 s}$ to be a block of 2 's of length $2 s$; otherwise define $c_{1} c_{2} \ldots c_{2 s}$ to be a block of 1's of length $2 s$. Now define $Y=Y\left(c_{1}, c_{2}, \ldots, c_{2 s}\right)$ as the sequence of natural numbers not containing the block of digits $c_{1} c_{2} \ldots c_{2 s}$. If we write

$$
\sum_{i=1}^{\infty} 1 / a_{i}=\sum_{a \in Y} 1 / a+\sum_{a \notin Y} 1 / a,
$$

then by the Lemma the first sum on the right side converges, and hence the second sum diverges. This implies that there are infinitely many a_{i} that contain the block of digits $c_{1} c_{2} \ldots c_{2 s}$. This in turn implies that B cannot be a repeating block of digits in α. This contradiction establishes the Theorem.

ACKNOWLEDGMENT. The author would like to thank the referee for a number of suggestions and for detecting some flaws in our original version.

REFERENCES

1. Hardy-Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford, Clarendon Press, 1979.
2. G. Pólya-G. Szegö, Problems and Theorems in Analysis II., Springer-Verlag, 1976, (exercise 257.)

Department of Math. L. Eötvös Univ. and

Math. Inst. of the Hung. Acad. of Sci.
Budapest, Pf 127, H-1364
Hungary

Professor Florian Cajori died suddenly of pneumonia on August 14, 1930, at his home in Berkeley, California. He was a charter member of the Mathematical Association of America and was one of an original group of four (later enlarged to twelve) representatives of mid-western universities and colleges who made possible the re-establishment of the American Mathematical Monthly on a sound financial basis. A detailed account of his historical researches will be published in the Monthly in due course.

37(1930), 392

