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A Simple Direct Proof of Marden’s Theorem

Erich Badertscher

Abstract. Marden’s theorem characterizes the critical points of complex polynomials of de-
gree 3 in a nice geometrical way. Our proof of the theorem is based directly on the defining
property of ellipses.

“Marden’s theorem” (proven much earlier by J. Siebeck; see [1], [2] and the refer-
ences cited there) states that the critical points e, f € C of a complex polynomial p of
degree 3,

P =G@-—a)z-bz-c)=2—(@+b+)z*+---
P@)=3z—e)z—f)=3(—(e+ fHz+ef)

are the foci of the Steiner inellipse of the triangle with vertices a, b, ¢ € C:

a b

Figure 1. Steiner inellipse with center and foci

The Steiner inellipse of a triangle abc is the image of the incircle of an equilateral
triangle aybycy, under the affine transformation that maps ay to a, by to b, and ¢y to c.
It is tangent to each side of the triangle at its midpoint and its center is the centroid s
of the triangle.

The Steiner inellipse is the unique ellipse with center s that passes through all three
midpoints of the sides of the triangle abc (the Steiner circumellipse of the medial
triangle). Indeed, in the case of a circle, this is possible only if the triangle is circum-
scribed and equilateral.

Proof. To prove Marden’s theorem we may assume that the point 0 € C is the tri-
angle’s centroid s:

a+b+c=0 andthus e+ f =0. (1)
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In this case, the derivative of p,

P@=c-a)z—b)+(z—a)z—c)+(z—b)(z—0) 2
=@z—-a)z—b)+ (22— (@+b)(z—0) 3)

can also be written as
P'(2) =3(z+e)(z—e). 4)

For the triangle’s side midpoint z;, = #, we find from formulas (4) and (3)

a—b\*
3(zl+e)(z1—e)=—( 7 ) 5)

For the sum of the distances from z; to the points —e and e, the parallelogram
identity, formula (5), and formula (1) (a + b = —c) yield

2(jz el + |z = e)? = 20z1 +el’ + 20z — e’ + 4@ + &) (21— o)
= 4lz1* + 4le* + jla — b
= la +b* +4lel” + jla — bP?

3 (la +bP +la—bI*) + Sla+ bI* 4 4lel
2 (lal* + 1bI* + IcI?) + 4le|*.

But this last sum is independent of our choice of the triangle’s side midpoint! The
ellipse E with foci —e and e (and center 0) through the midpoint # thus also passes
through the midpoints % and }% and therefore is the Steiner inellipse of the triangle

abc. |

From formula (5) we also might obtain a self-contained complex proof of Marden’s
theorem (without referring to affine transformations). By considering arguments in
addition to absolute values, arg(z; + e) + arg(z; — e) = —2arg(a — b), we see that a
light beam from the focus —e of E, reflected at the triangle’s side ab in z;, then passes
through the focus +e. The ellipse E is thus tangent to the side ab at its midpoint
z1. Since E passes through the other midpoints as well and since we may name the
triangle’s vertices arbitrarily, E is tangent to every side of the triangle at its midpoint.
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