A Simple Direct Proof of Marden's Theorem

Erich Badertscher

To cite this article: Erich Badertscher (2014) A Simple Direct Proof of Marden's Theorem, The American Mathematical Monthly, 121:6, 547-548, DOI: 10.4169/amer.math.monthly.121.06.547

To link to this article: https://doi.org/10.4169/amer.math.monthly.121.06.547

Published online: 13 Dec 2017.

Submit your article to this journal

Article views: 117

View related articles

View Crossmark data \quad

Citing articles: 2 View citing articles

A Simple Direct Proof of Marden's Theorem

Erich Badertscher

Abstract

Marden's theorem characterizes the critical points of complex polynomials of degree 3 in a nice geometrical way. Our proof of the theorem is based directly on the defining property of ellipses.

"Marden's theorem" (proven much earlier by J. Siebeck; see [1], [2] and the references cited there) states that the critical points $e, f \in \mathbb{C}$ of a complex polynomial p of degree 3 ,

$$
\begin{aligned}
p(z) & =(z-a)(z-b)(z-c)=z^{3}-(a+b+c) z^{2}+\cdots \\
p^{\prime}(z) & =3(z-e)(z-f)=3\left(z^{2}-(e+f) z+e f\right)
\end{aligned}
$$

are the foci of the Steiner inellipse of the triangle with vertices $a, b, c \in \mathbb{C}$:

Figure 1. Steiner inellipse with center and foci

The Steiner inellipse of a triangle $a b c$ is the image of the incircle of an equilateral triangle $a_{0} b_{0} c_{0}$, under the affine transformation that maps a_{0} to a, b_{0} to b, and c_{0} to c. It is tangent to each side of the triangle at its midpoint and its center is the centroid s of the triangle.

The Steiner inellipse is the unique ellipse with center s that passes through all three midpoints of the sides of the triangle abc (the Steiner circumellipse of the medial triangle). Indeed, in the case of a circle, this is possible only if the triangle is circumscribed and equilateral.

Proof. To prove Marden's theorem we may assume that the point $0 \in \mathbb{C}$ is the triangle's centroid s :

$$
\begin{equation*}
a+b+c=0 \quad \text { and thus } \quad e+f=0 \tag{1}
\end{equation*}
$$

http://dx.doi.org/10.4169/amer.math.monthly.121.06.547
MSC: Primary 30C15

In this case, the derivative of p,

$$
\begin{align*}
p^{\prime}(z) & =(z-a)(z-b)+(z-a)(z-c)+(z-b)(z-c) \tag{2}\\
& =(z-a)(z-b)+(2 z-(a+b))(z-c) \tag{3}
\end{align*}
$$

can also be written as

$$
\begin{equation*}
p^{\prime}(z)=3(z+e)(z-e) \tag{4}
\end{equation*}
$$

For the triangle's side midpoint $z_{1}=\frac{a+b}{2}$, we find from formulas (4) and (3)

$$
\begin{equation*}
3\left(z_{1}+e\right)\left(z_{1}-e\right)=-\left(\frac{a-b}{2}\right)^{2} \tag{5}
\end{equation*}
$$

For the sum of the distances from z_{1} to the points $-e$ and e, the parallelogram identity, formula (5), and formula (1) ($a+b=-c$) yield

$$
\begin{aligned}
2\left(\left|z_{1}+e\right|+\left|z_{1}-e\right|\right)^{2} & =2\left|z_{1}+e\right|^{2}+2\left|z_{1}-e\right|^{2}+4\left|\left(z_{1}+e\right)\left(z_{1}-e\right)\right| \\
& =4\left|z_{1}\right|^{2}+4|e|^{2}+\frac{1}{3}|a-b|^{2} \\
& =|a+b|^{2}+4|e|^{2}+\frac{1}{3}|a-b|^{2} \\
& =\frac{1}{3}\left(|a+b|^{2}+|a-b|^{2}\right)+\frac{2}{3}|a+b|^{2}+4|e|^{2} \\
& =\frac{2}{3}\left(|a|^{2}+|b|^{2}+|c|^{2}\right)+4|e|^{2} .
\end{aligned}
$$

But this last sum is independent of our choice of the triangle's side midpoint! The ellipse E with foci $-e$ and e (and center 0) through the midpoint $\frac{a+b}{2}$ thus also passes through the midpoints $\frac{a+c}{2}$ and $\frac{b+c}{2}$ and therefore is the Steiner inellipse of the triangle $a b c$.

From formula (5) we also might obtain a self-contained complex proof of Marden's theorem (without referring to affine transformations). By considering arguments in addition to absolute values, $\arg \left(z_{1}+e\right)+\arg \left(z_{1}-e\right)=-2 \arg (a-b)$, we see that a light beam from the focus $-e$ of E, reflected at the triangle's side $a b$ in z_{1}, then passes through the focus $+e$. The ellipse E is thus tangent to the side $a b$ at its midpoint z_{1}. Since E passes through the other midpoints as well and since we may name the triangle's vertices arbitrarily, E is tangent to every side of the triangle at its midpoint.

ACKNOWLEDGMENTS. I thank my colleague Prof. Franz Bachmann for challenging me to find a simple proof of Marden's theorem. I thank the referees for their comments.

REFERENCES

. D. Kalman, An elementary proof of Marden's theorem, Amer. Math. Monthly 115 (2008) 330-338.
2. M. Marden, A note on the zeroes of the sections of a partial fraction, Bulletin of the Amer. Math. Society 51 (1945) 935-940.

