Inverse Functions of $y=x 1 / x$
Author(s): Yunhi Cho and Kyunghwan Park
Source: The American Mathematical Monthly, Vol. 108, No. 10 (Dec., 2001), pp. 963-967
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2695417
Accessed: 25/09/2013 14:06

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

Edited by Jimmie D. Lawson and William Adkins

Inverse Functions of $y=x^{1 / x}$

Yunhi Cho and Kyunghwan Park

1. INTRODUCTION. For $y>0$, consider the problem of solving $x=\log _{y} x$, i.e., of finding all numbers x that are their own logarithms (note that x must be positive for the right-hand side to be defined). This problem is equivalent to solving for x the exponential equation $y^{x}=x$, or $y=x^{1 / x}$. Hence the solutions x to $x=\log _{y} x$ belong to the inverse relation of the function $y=x^{1 / x}$. By elementary calculus one sees that the function $y=x^{1 / x}=e^{\ln (x) / x}$ is increasing on ($0, e$] with image $\left(0, e^{1 / e}\right]$ and decreasing on $[e, \infty)$ with image ($\left.1, e^{1 / e}\right]$ (see Figure 1). Thus to find all solutions to our original problem, it suffices to find the inverse function for $y=x^{1 / x}$, first on the interval $(0, e]$, and then on the interval $[e, \infty)$. For the actual computations, it is convenient to divide the inverse relation or multi-function into three branch functions, the inverse of $y=x^{1 / x}$ restricted first to $(0,1 / e]$, then to $[1 / e, e]$, and finally restricted to $[e, \infty)$.

Figure 1. $y=x^{\frac{1}{x}}$

Consider the function, usually called the hyperpower function, defined as the sequential power limit $x=y^{y^{y^{i}}}$. This function was discovered by Euler and has been rediscovered and studied by other mathematicians; see [2] for some of its history, properties, and other references. It converges for y in the interval $\left[e^{-e}, e^{1 / e}\right]$, diverges for positive y outside this interval, and satisfies the equation $x=y^{x}$ on this interval (see [2], [3]). Hence it is the inverse of $y=x^{1 / x}$ restricted to the interval $[1 / e, e]$. Our object in this article is to find representations of the inverse of $y=x^{1 / x}$ restricted to $(0,1 / e]$ and restricted to $[e, \infty)$ and use these representations to study the inverses of functions such as $y=x^{x}, y=x e^{x}, y=x \ln x$, and $y=x+e^{x}$.

2. CHARACTERIZATION OF INVERSE FUNCTIONS OF $\boldsymbol{y}=\boldsymbol{x}^{1 / x}$. The fol-

 lowing is our main result:Theorem 1. The inverse branch functions of $y=x^{1 / x}$ are represented by
(a) $x=y^{y^{y^{*}}},\left(1 / e \leq x \leq e, e^{-e} \leq y \leq e^{1 / e}\right)$ and
(b) $x=\cdots \log _{y} \log _{y} e,\left(e \leq x, 1<y \leq e^{1 / e}\right)$ and
(c) $x=\cdots \log _{y} \log _{y}(1 / e),\left(0<x \leq 1 / e, 0<y \leq e^{-e}\right)$.

Furthermore, for each of the cases (a), (b), and (c), the sequential limit does not exist for positive y outside the specified region.

Proof. Since the hyperpower function $x=y^{y^{y^{i}}}$ is the inverse function on the region given in part (a) of the theorem, and it diverges for $y>0$ not in the interval $\left[e^{-e}, e^{1 / e}\right]$, we consider the other two cases.

To prove (b), consider the graph of $y=x^{1 / x}$ beyond $x=e$. This function is decreasing on $[e, \infty)$, and hence there exists for each $y \in\left(1, e^{1 / e}\right]$, the range, a unique $x \in$ $[e, \infty)$ such that $y=x^{1 / x}$. Moreover, $y=x^{1 / x}$ is equivalent to $\log _{y} x=x$, and thus the latter has exactly one solution \bar{x} with $\bar{x} \geq e$. The fixed point equation $\log _{y} x=x$ motivates the choice of the iterating function $f(x):=\log _{y}(x)=\ln x / \ln y$, and we consider the sequence obtained by iterating:

$$
x_{n}:=f^{n}(e), \quad n \geq 0 .
$$

Since $y \leq e^{1 / e}$, applying the order-preserving function f to both sides we obtain $e \leq$ $f(e)$, and thus

$$
e \leq f(e) \leq f^{2}(e) \leq \cdots,
$$

an increasing sequence. In addition, since $e \leq \bar{x}$, then $f(e) \leq f(\bar{x})=\bar{x}$; it follows by induction that $x_{n} \leq \bar{x}$ for every x_{n}. Thus the bounded monotone sequence x_{n} converges to some real number x above e, and by continuity of $f, f(x)=x$. Since the fixed point is unique, it follows that $\bar{x}=x=\lim _{n \rightarrow \infty}\left(\log _{y}\right)^{n}(e)$.

Now if $y>e^{1 / e}$, then y is not in the range of $y=x^{1 / x}$, and thus the equation $\log _{y} x=x$ has no solution. Thus the limit $x=\lim _{n \rightarrow \infty}\left(\log _{y}\right)^{n}(e)$ cannot exist, for otherwise by continuity, $\log _{y} x=x$. On the other hand, if $0<y<1$, then $\log _{y} e=$ $\ln e / \ln y=1 / \ln y<0$, and thus $\log _{y} \log _{y} e$ is not even defined, and hence the sequence is not defined.

To prove (c), assume that $0<y<e^{-e}$. Note that

$$
0<y<e^{-e} \Leftrightarrow \ln y<-e \Leftrightarrow \frac{1}{-\ln y}<\frac{1}{e} .
$$

Since $f(x)=\log _{y} x=\ln x / \ln y$ is strictly decreasing, hence order-reversing, we have $0<f(1 / e)=-1 / \ln y=1 /(-\ln y)<1 / e$. Applying the order-reversing f to the ends of the inequality yields $f^{2}(1 / e)>f(1 / e)$. In addition, by the Mean Value Theorem, $f^{2}(1 / e)-f(1 / e)=f^{\prime}(c)(f(1 / e)-(1 / e))$ for some $c, f(1 / e)<c<1 / e$. Since

$$
\left|f^{\prime}(c)\right|=\left|\frac{1}{c \ln y}\right|=\frac{1}{-\ln y} \cdot \frac{1}{c}=f\left(\frac{1}{e}\right) \cdot \frac{1}{c}<c \cdot \frac{1}{c}=1,
$$

we conclude that $f^{2}(1 / e)-f(1 / e)<(1 / e)-f(1 / e)$, i.e., $f^{2}(1 / e)<1 / e$. By the order-reversing property of f and induction, we obtain

$$
0<f\left(\frac{1}{e}\right)<f^{3}\left(\frac{1}{e}\right)<f^{5}\left(\frac{1}{e}\right)<\cdots, \quad \cdots<f^{4}\left(\frac{1}{e}\right)<f^{2}\left(\frac{1}{e}\right)<\frac{1}{e},
$$

and $f^{2 m+1}(1 / e)<f^{2 n}(1 / e)$ for all non-negative integers m, n. The monotonically decreasing bounded sequence of even powers converges to some b, the monotonically increasing bounded sequence of odd powers converges to some $a \leq b$, and by continuity of $f, f(a)=b$ and $f(b)=a$. If $a<b$, we can again apply the Mean Value Theorem to the interval $[a, b]$ and conclude that $f(a)-f(b)<b-a$, a contradiction. Thus $a=b$ is a fixed point for $f(x)=\log _{y} x$, hence must be the unique fixed point, and $a=\lim _{n \rightarrow \infty}\left(\log _{y}\right)^{n}(1 / e)$.

Now if $y \geq 1$, then $\log _{y}(1 / e)=-1 / \ln y<0$, and thus $\log _{y} \log _{y}(1 / e)$ is not defined. For the case $e^{-e}<y<1$, let us suppose that the sequence $\left\{f^{n}(1 / e)\right\}_{n=1}^{\infty}$ is welldefined and has a unique limit \bar{x}, then we have $\log _{y} \bar{x}=\bar{x}$, i.e., $y=\bar{x}^{1 / \bar{x}}$, and hence the limit of the sequence is located in the interval $(1 / e, 1)$. As in the beginning part of the proof of (c), we obtain $f^{2}(1 / e)<1 / e$ from $e^{-e}<y$ by way of $-1 / \ln y>1 / e$, $f(1 / e)>1 / e,\left|f^{\prime}(c)\right|>1$, and $f^{2}(1 / e)-f(1 / e)<(1 / e)-f(1 / e)$, applied in the listed order. Note that $f^{2}(x)=\log _{y} \log _{y} x$ is strictly increasing, so order-preserving, for x in the interval $(0,1)$. Applying the order-preserving f^{2} to $f^{2}(1 / e)<1 / e$, we obtain

$$
\cdots<f^{6}\left(\frac{1}{e}\right)<f^{4}\left(\frac{1}{e}\right)<f^{2}\left(\frac{1}{e}\right)<\frac{1}{e} .
$$

The sequence $\left\{f^{2 n}(1 / e)\right\}_{n=1}^{\infty}$ also has the same limit \bar{x}, so we have

$$
\bar{x}<\frac{1}{e} \quad \text { and } \quad \bar{x}>\frac{1}{e} .
$$

From this contradiction, we conclude that the sequence $\left\{f^{n}(1 / e)\right\}_{n=1}^{\infty}$ is not welldefined or diverges.

The remaining case $y=e^{-e}$ is trivial to verify.
3. INVERSE FUNCTIONS OF $y=x^{x}$ AND $y=x e^{x}$, AND FUNCTIONAL REPRESENTATIONS OF $\boldsymbol{w}^{w}=\boldsymbol{x}^{x}$ AND $\boldsymbol{x}^{z}=\boldsymbol{z}^{x}$. Let $x=h(y)$ denote the inverse multifunction of $y=x^{1 / x}$, so that h is given by the three types of inverse of $y=x^{1 / x}$ in Theorem 1. Then we can represent the inverse function of $y=x^{x}$ by using of h and a substitution $s=1 / x$. We see that $y=x^{x}=1 / s^{1 / s}$, so $1 / y=s^{1 / s}$, hence $s=h(1 / y)$. Therefore the inverse function of $y=x^{x}$ is $x=1 / h(1 / y)$. We deduce a result for the inverse functions of $y=x^{x}$.

Corollary 2. The inverse functions of $y=x^{x}$ are

$$
x=p(y)=\left\{\begin{array}{cl}
\left(\cdots \log _{\frac{1}{y}} \log _{\frac{1}{y}} \frac{1}{e}\right)^{-1}, & \left(x \geq e, y \geq e^{e}\right) \\
y^{\frac{1}{y}} \frac{1}{y}
\end{array}, \quad\left(\frac{1}{e} \leq x \leq e, e^{-\frac{1}{e}} \leq y \leq e^{e}\right) .\right.
$$

We know that the inverse multi-function of $y=x^{x}$ is $x=p(y)$. Then we can represent the inverse function of $y=x e^{x}$ by using p. We see that $y=x e^{x}$ converts to $e^{y}=\left(e^{x}\right)^{\left(e^{x}\right)}$, hence $e^{x}=p\left(e^{y}\right)$, so we have $x=\ln p\left(e^{y}\right)$. Therefore the inverse multi-function of $y=x e^{x}$ is $x=\ln p\left(e^{y}\right)$; this inverse function, called Lambert's W-function, is useful in many areas [1]. We conclude with a result for the inverse functions of $y=x e^{x}$.

Corollary 3. The inverse functions of $y=x e^{x}$ are

$$
x=\left\{\begin{array}{cl}
-\log _{e}\left(\cdots \log _{\left(e^{-y}\right)} \log _{\left(e^{-y}\right)} \frac{1}{e}\right), & (x \geq 1, y \geq e) \\
y\left(e^{-y}\right)^{\left(e^{-y}\right)}, & \left(-1 \leq x \leq 1,-\frac{1}{e} \leq y \leq e\right) \\
-\log _{e}\left(\cdots \log _{\left(e^{-y}\right)} \log _{\left(e^{-y}\right)} e\right), & \left(x \leq-1,-\frac{1}{e} \leq y<0\right) .
\end{array}\right.
$$

Also we can find the full representations of inverse functions of $y=x \ln x, y=x+$ $\ln x, y=x e^{-x}, y=x-\ln x, y=x+e^{x}$, and so on, by similar methods. In particular, the inverse function of $y=x+e^{x}$ gives an explicit solution of the equation $e^{x}+x=$ 0 , namely

$$
-\left(\frac{1}{e}\right)^{\left(\frac{1}{e}\right)^{?}}
$$

Next we state the functional representations of $w^{w}=x^{x}$ and $x^{z}=z^{x}$. These are easily obtained, so we show only the results.

Corollary 4. The functional representations of $w^{w}=x^{x}$ are $w=x$ and

$$
w=\left\{\begin{array}{cc}
\left(x^{x}\right)^{\left(x^{-x}\right)^{\left(x^{-x}\right)}}, & x \in\left(0, \frac{1}{e}\right] \\
\left(\cdots \log _{\left(x^{-x}\right)} \log _{\left(x^{-x}\right)} e\right)^{-1}, & x \in\left[\frac{1}{e}, 1\right) .
\end{array}\right.
$$

Corollary 5. The functional representations of $z^{1 / z}=x^{1 / x}$ are $z=x$ and

$$
z=\left\{\begin{array}{cl}
\left(x^{\frac{1}{x}}\right)^{\left(x^{\frac{1}{x}}\right)}, & x \in[e, \infty) \\
\cdots \log _{\left(x^{\frac{1}{x}}\right)} \log _{\left(x^{\frac{1}{x}}\right)} e, & x \in(1, e] .
\end{array}\right.
$$

By the symmetry of $w^{w}=x^{x}$, the two representations in Corollary 4 are inverse functions to each other, and similarly for $z^{1 / z}=x^{1 / x}$.

ACKNOWLEDGEMENTS. We acknowledge our indebtedness to Professor Arthur Knoebel for many helpful suggestions. The first author is supported by the Basic Research Program of Korea Science \& Engineering Foundation (grant No. 1999-2-102-002-3).
\rightarrow R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth, On the Lambert W Function, Adv. Comput. Math. 5 (1996) 329-359.
\rightarrow R. Arthur Knoebel, Exponentials reiterated, this Monthly 88 (1981) 235-252.
3. M. Spivak, Calculus, 2nd ed., Publish or Perish, Berkeley, 1980.

University of Seoul, Seoul 130-743, Korea
yhcho@uoscc.uos.ac.kr
ITPlus, Inc., FKI bldg. 4F, 28-1 Yoido-dong, Yonugdeungpo-gu, Seoul, Korea pkh@itplus.co.kr

On the Total Edge-Length of a Tetrahedron

Hiroshi Maehara

For a tetrahedron $A B C D$ in \mathbf{R}^{3}, let $L(A B C D)$ denote the sum of its edge-lengths. We prove the following:

Theorem 1. Let R be the radius of the sphere with minimum volume that encloses a given tetrahedron $A B C D$. Then $6 R<L(A B C D) \leq 4 \sqrt{6} R, L(A B C D)=4 \sqrt{6} R$ only when $A B C D$ is a regular tetrahedron, and $L(A B C D)=6 R$ only in a limit degenerate case such as $A \neq B=C=D$.

Denote the perimeter of a triangle $A B C$ by $L(A B C)$. A similar result for $L(A B C)$ can be obtained easily.

Lemma 1. Let $A=(a, 0), B=(-a, 0), C=\left(x_{0}, y_{0}\right), y_{0}>0$, be three points in \mathbf{R}^{2}. If a point $X=(x, y)$ lies on the circle determined by A, B, C, and if $y>y_{0}$ then $\overline{A C}+\overline{B C}<\overline{A X}+\overline{B X}$.

Proof. X is exterior to the ellipse with foci A, B that passes through C.
Corollary 1. Let R be the radius of the circle with minimum area that encloses a given triangle $A B C$ in \mathbf{R}^{2}. Then $4 R<L(A B C) \leq 3 \sqrt{3} R, L(A B C)=3 \sqrt{3} R$ only when $A B C$ is an equilateral triangle, and $L(A B C)=4 R$ only in a limit degenerate case.

Proof. Let Γ be the circle with minimum area that encloses the triangle $A B C$ in the plane, and let O be its center. (Γ might not be the circumscribed circle of the triangle $A B C$.) Then O lies either inside the triangle $A B C$ or on a side of $A B C$. First, consider the case that O lies on a side, say, on the side $A B$. Then $\overline{A B}=2 R$ and $\overline{A C}+\overline{C B}>$ $\overline{A B}$. Hence $L(A B C)>4 R$. Next, suppose that O is interior to the triangle $A B C$. We may put $A=(a, 0), B=(-a, 0), C=\left(x_{1}, y_{1}\right), y_{1}>0$. Let $A C^{\prime}$ be a diameter of Γ, and let $C^{\prime}=\left(x_{0}, y_{0}\right)$. Then, since O is interior to $\triangle A B C$, it follows that $0<y_{0}<y_{1}$. Hence Lemma 1 ensures that $L(A B C)>L\left(A B C^{\prime}\right)$. Since O lies on $A C^{\prime}$, it follows that $L\left(A B C^{\prime}\right)>4 R$. Hence $L(A B C)>4 R$.

