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NOTES

Edited by Jimmie D. Lawson and William Adkins

Inverse Functions of y = x1/*

Yunhi Cho and Kyunghwan Park

1. INTRODUCTION. For y > 0, consider the problem of solving x = logy x, ie.,
of finding all numbers x that are their own logarithms (note that x must be positive
for the right-hand side to be defined). This problem is equivalent to solving for x
the exponential equation y* = x, or y = x'/*. Hence the solutions x to x = log, x
belong to the inverse relation of the function y = x!/*. By elementary calculus one
sees that the function y = x!/* = "™/~ ig increasing on (0, e] with image (0, e'/¢]
and decreasing on [e, co) with image (1, e'/¢] (see Figure 1). Thus to find all solutions
to our original problem, it suffices to find the inverse function for y = x!/*, first on
the interval (0, e], and then on the interval [e, co). For the actual computations, it is
convenient to divide the inverse relation or multi-function into three branch functions,

the inverse of y = x!/* restricted first to (0, 1/e], then to [1/e, e], and finally restricted
to [e, 00).

1fe _

I e

Figure 1. y = x¥

Consider the function, usually called the hyperpower function, defined as the se-

quential power limit x = y»” . This function was discovered by Euler and has been
rediscovered and studied by other mathematicians; see [2] for some of its history,
properties, and other references. It converges for y in the interval [e~¢, e!/¢], diverges
for positive y outside this interval, and satisfies the equation x = y* on this interval
(see [2], [3]). Hence it is the inverse of y = x!/* restricted to the interval [1/e, e]. Our
object in this article is to find representations of the inverse of y = x!/* restricted to
(0, 1/e] and restricted to [e, 00) and use these representations to study the inverses of
functions suchas y = x*, y =xe*, y=xInx,and y = x 4 ¢*.
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2. CHARACTERIZATION OF INVERSE FUNCTIONS OF y = x!/*. The fol-
lowing is our main result:

Theorem 1. The inverse branch functions of y = x'/* are represented by

(@) x=y" ,(/e<x<ee*<y<cl)and
(b) x="---log,log e, (e <x,1 <y<e' and
(c) x ="---log,log,(1/e), (0 <x < 1/e,0 <y <e™).

Furthermore, for each of the cases (a), (b), and (c), the sequential limit does not
exist for positive y outside the specified region.

Proof. Since the hyperpower function x = y>” is the inverse function on the region
given in part (a) of the theorem, and it diverges for y > 0 not in the interval [e¢, e!/],
we consider the other two cases.

To prove (b), consider the graph of y = x!/* beyond x = e. This function is decreas-
ing on [e, 00), and hence there exists for each y € (1, e!/¢], the range, a unique x €
[e, 00) such that y = x'/*. Moreover, y = x'/* is equivalent to log, x = x, and thus
the latter has exactly one solution X with X > e. The fixed point equation log, x = x
motivates the choice of the iterating function f(x) := log,(x) = Inx/Iny, and we
consider the sequence obtained by iterating:

X, = f"(e), n=>0.

Since y < e!/¢, applying the order-preserving function f to both sides we obtain e <
f(e), and thus

e<fle)< fHe)< -,

an increasing sequence. In addition, since e < X, then f(e) < f(x) = X; it follows by
induction that x,, < X for every x,. Thus the bounded monotone sequence x, converges
to some real number x above e, and by continuity of f, f(x) = x. Since the fixed point
is unique, it follows that x = x = lim,,_,oo(logy)" (e).

Now if y > e!/¢, then y is not in the range of y = x!/*, and thus the equation
log, x = x has no solution. Thus the limit x = lim,,«(log,)"(e) cannot exist, for
otherwise by continuity, log, x = x. On the other hand, if 0 < y < 1, then log, e =

Ine/Iny =1/Iny < 0, and thus log, log, e is not even defined, and hence the se-
quence is not defined.

To prove (c), assume that 0 < y < e¢. Note that

1 1

O<y<e’sohy<-—-es < -.
—Iny e

Since f(x) = log, x = Inx/Iny is strictly decreasing, hence order-reversing, we have
0< f(/e)=—1/Iny = 1/(—1ny) < 1/e. Applying the order-reversing f to the
ends of the inequality yields f2(1/e) > f(1/e). In addition, by the Mean Value The-
orem, f2(1/e) — f(1/e) = f'(c)(f(1/e) — (1/e)) for some c, f(1/e) < c < 1/e.

Since
1 1 1 1 1
= -—=f(—)~—<c.—=1,
—Iny ¢ e) c c
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we conclude that f2(1/e) — f(1/e) < (1/e) — f(1/e), ie., f*(1/e) < 1/e. By the
order-reversing property of f and induction, we obtain

0<f(l> <f3(l) <f5(l) < e, e <f4<1) <f2<1) < 1’

e e e e e e

and f2"*1(1/e) < f2"(1/e) for all non-negative integers m, n. The monotonically de-
creasing bounded sequence of even powers converges to some b, the monotonically
increasing bounded sequence of odd powers converges to some a < b, and by con-
tinuity of f, f(a) = b and f(b) = a. If a < b, we can again apply the Mean Value
Theorem to the interval [a, b] and conclude that f(a) — f(b) < b — a, a contradic-
tion. Thus a = b is a fixed point for f(x) = log, x, hence must be the unique fixed
point, and a = lim,, (log,)"(1/e).

Now if y > 1, then log,(1/e) = —1/Iny < 0, and thus log, log,(1/e) is not de-
fined. For the case e < y < 1, let us suppose that the sequence { f*(1/e)}:2, is well-
defined and has a unique limit X, then we have log, X =X, i.e., y = x'/*, and hence
the limit of the sequence is located in the interval (1/e, 1). As in the beginning part of
the proof of (c), we obtain f2(1/e) < 1/e from e=¢ < y by way of —1/Iny > 1/e,
f1/e) > 1/e, |f'(c)| > 1,and f2(1/e) — f(1/e) < (1/e) — f(1/e), applied in the
listed order. Note that f2(x) = log, log, x is strictly increasing, so order-preserving,
for x in the interval (0, 1). Applying the order-preserving f2 to f2(1/e) < 1/e, we

obtain
1 1
(e o)<t
e e e e
The sequence { f2"(1/e)}°2, also has the same limit X, so we have

1 1
X<- and X > —.
e

Q

From this contradiction, we conclude that the sequence {f"(1/e)}2, is not well-
defined or diverges.

The remaining case y = e¢ is trivial to verify. ]

3. INVERSE FUNCTIONS OF y = x* AND y = xe*, AND FUNCTIONAL REP-
RESENTATIONS OF w* = x* AND x? = z*. Let x = h(y) denote the inverse multi-
function of y = x!/*, so that 4 is given by the three types of inverse of y = x!/* in
Theorem 1. Then we can represent the inverse function of y = x* by using of # and a
substitution s = 1/x. We see that y = x* = 1/s'/%, s0 1/y = s'/*, hence s = h(1/y).
Therefore the inverse function of y = x* is x = 1/k(1/y). We deduce a result for the
inverse functions of y = x*.

Corollary 2. The inverse functions of y = x* are

!
(-ulogl log: —) , (x>ey=e)
y y e
1% 1 1
x=pQy) = vy, (—Sxﬁe,e'?ﬁyfee)
e
-1 1 1
{ (~-~logllogle> , O<x<-,ee<y<l].
y y e
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We know that the inverse multi-function of y = x* is x = p(y). Then we can rep-
resent the inverse function of y = xe* by using p. We see that y = xe* converts
to ¥ = ()", hence ¢* = p(e”), so we have x = In p(e”). Therefore the inverse
multi-function of y = xe* is x = In p(e”); this inverse function, called Lambert’s

W-function, is useful in many areas [1]. We conclude with a result for the inverse
functions of y = xe*.

Corollary 3. The inverse functions of y = xe* are
1
—log, | - - -1og -y log -, > x>=1,y>e)

e 1
x = y e, (—15x51,——syse)
e

1
—log, (- - -10g .-y log -y €), <x <-1, — =y< 0) .

Also we can find the full representations of inverse functionsof y = xlnx,y = x +
Inx,y=xe ™, y=x—Inx,y = x + ¢*, and so on, by similar methods. In particular,
the inverse function of y = x + e* gives an explicit solution of the equation e* 4+ x =

0, namely
1\ (
e

Next we state the functional representations of w* = x* and x* = z*. These are
easily obtained, so we show only the results.

1)’

Corollary 4. The functional representations of w* = x* are w = x and

N 1
@) x € <0, —]
e

(. o log(x_x) log(x_x) e)“l , X € [%, 1) .

w =

Corollary 5. The functional representations of z'/* = x'/* are 7 = x and

(x%)(x ) , x € [e, 00)

~--log(x%) log(x%)e, x e (1,e].

e

4

By the symmetry of w” = x*, the two representations in Corollary 4 are inverse
functions to each other, and similarly for z!/* = x!/*.
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On the Total Edge-Length of a Tetrahedron

Hiroshi Maehara

For a tetrahedron ABC D in R, let L(ABC D) denote the sum of its edge-lengths.
We prove the following:

Theorem 1. Let R be the radius of the sphere with minimum volume that encloses
a given tetrahedron ABCD. Then 6R < L(ABCD) < 4v/6R, L(ABCD) = 4+/6R
only when ABC D is a regular tetrahedron, and L(ABC D) = 6R only in a limit de-
generate case suchas A # B =C = D.

Denote the perimeter of a triangle ABC by L(ABC). A similar result for L(ABC)
can be obtained easily.

Lemma 1. Let A = (a,0), B = (—a, 0), C = (xo, Yo), Yo > 0, be three points in R>.
If a point X = (x, y) lies on the circle determined by A, B, C, and if y > yo then
AC+ BC < AX + BX.

Proof. X is exterior to the ellipse with foci A, B that passes through C. |

Corollary 1. Let R be the radius of the circle with minimum area that encloses a
given triangle ABC in R% Then 4R < L(ABC) < 343R, L(ABC) = 34/3R only

when ABC is an equilateral triangle, and L(ABC) = 4R only in a limit degenerate
case.

Proof. Let T be the circle with minimum area that encloses the triangle ABC in the
plane, and let O be its center. (I" might not be the circumscribed circle of the triangle
ABC.) Then O lies either inside the triangle ABC or on a side of ABC. First, consider
the case that O lies on a side, say, on the side AB. Then AB =2R and AC + CB >
‘AB. Hence L(ABC) > 4R. Next, suppose that O is interior to the triangle ABC. We
may put A = (a,0), B = (—a,0), C = (x1, y1), y1 > 0. Let AC’ be a diameter of ",
and let C’ = (xo, o). Then, since O is interior to AABC, it follows that 0 < yy < y;.
Hence Lemma 1 ensures that L(ABC) > L(ABC"). Since O lies on AC’, it follows
that L(ABC’) > 4R. Hence L(ABC) > 4R.

December 2001] NOTES 967

This content downloaded from 130.60.206.43 on Wed, 25 Sep 2013 14:06:51 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 963
	p. 964
	p. 965
	p. 966
	p. 967

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 108, No. 10 (Dec., 2001), pp. 897-1006
	Volume Information [pp. 995-1006]
	Front Matter
	Visible Structures in Number Theory [pp. 897-910]
	How to Differentiate and Integrate Sequences [pp. 911-921]
	Dr. Veblen Takes a Uniform Mathematics in the First World War [pp. 922-931]
	Quantum Error Correction: Classic Group Theory Meets a Quantum Challenge [pp. 932-962]
	Notes
	Inverse Functions of y = x [pp. 963-967]
	On the Total Edge-Length of a Tetrahedron [pp. 967-969]
	Evaluation of Dirichlet Series [pp. 969-971]
	Affine Transformations, Polynomials, and Proportionality [pp. 972-975]

	Problems and Solutions
	Problems
	10907 [p. 976]
	10908 [p. 976]
	10909 [p. 976]
	10910 [p. 976]
	10911 [p. 976]
	10912 [p. 976]
	10913 [p. 977]

	Solutions
	The Decimal Expansions of Powers of 9: 10758 [pp. 977-978]
	Fibonacci Numbers and Powers: 10765 [pp. 978-979]
	A Divisibility Result for a Combination of mth Powers: 10770 [pp. 979-980]
	Three-Dimensional Lattice Walks in the Upper Half-Space: 10795 [p. 980]
	Incognito Hypergeometrics: 10836 [pp. 980-981]
	Almost Fixed Sets: 10843 [pp. 981-982]

	Revivals
	A Generalization of Hall's Theorem: 10701 [p. 982]


	Reviews
	Review: untitled [pp. 983-988]
	Review: untitled [pp. 988-992]

	Editor's Endnotes [pp. 993-994]
	Back Matter



