

Inverse Functions of $y = x^{1/x}$ Author(s): Yunhi Cho and Kyunghwan Park Source: The American Mathematical Monthly, Vol. 108, No. 10 (Dec., 2001), pp. 963-967 Published by: Mathematical Association of America Stable URL: <u>http://www.jstor.org/stable/2695417</u> Accessed: 25/09/2013 14:06

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to *The American Mathematical Monthly*.

http://www.jstor.org

NOTES

Edited by Jimmie D. Lawson and William Adkins

Inverse Functions of $y = x^{1/x}$

Yunhi Cho and Kyunghwan Park

1. INTRODUCTION. For y > 0, consider the problem of solving $x = \log_y x$, i.e., of finding all numbers x that are their own logarithms (note that x must be positive for the right-hand side to be defined). This problem is equivalent to solving for x the exponential equation $y^x = x$, or $y = x^{1/x}$. Hence the solutions x to $x = \log_y x$ belong to the inverse relation of the function $y = x^{1/x}$. By elementary calculus one sees that the function $y = x^{1/x} = e^{\ln(x)/x}$ is increasing on (0, e] with image $(0, e^{1/e}]$ and decreasing on $[e, \infty)$ with image $(1, e^{1/e}]$ (see Figure 1). Thus to find all solutions to our original problem, it suffices to find the inverse function for $y = x^{1/x}$, first on the interval (0, e], and then on the interval $[e, \infty)$. For the actual computations, it is convenient to divide the inverse relation or multi-function into three branch functions, the inverse of $y = x^{1/x}$ restricted first to (0, 1/e], then to [1/e, e], and finally restricted to $[e, \infty)$.

Consider the function, usually called the hyperpower function, defined as the sequential power limit $x = y^{y^{y^*}}$. This function was discovered by Euler and has been rediscovered and studied by other mathematicians; see [2] for some of its history, properties, and other references. It converges for y in the interval $[e^{-e}, e^{1/e}]$, diverges for positive y outside this interval, and satisfies the equation $x = y^x$ on this interval (see [2], [3]). Hence it is the inverse of $y = x^{1/x}$ restricted to the interval [1/e, e]. Our object in this article is to find representations of the inverse of $y = x^{1/x}$ restricted to (0, 1/e] and restricted to $[e, \infty)$ and use these representations to study the inverses of functions such as $y = x^x$, $y = xe^x$, $y = x \ln x$, and $y = x + e^x$.

December 2001]

NOTES

2. CHARACTERIZATION OF INVERSE FUNCTIONS OF $y = x^{1/x}$. The following is our main result:

Theorem 1. The inverse branch functions of $y = x^{1/x}$ are represented by

- (a) $x = y^{y^{y^{-1}}}$, $(1/e \le x \le e, e^{-e} \le y \le e^{1/e})$ and
- (b) $x = \cdots \log_{y} \log_{y} e$, $(e \le x, 1 < y \le e^{1/e})$ and
- (c) $x = \cdots \log_{y} \log_{y}(1/e), (0 < x \le 1/e, 0 < y \le e^{-e}).$

Furthermore, for each of the cases (a), (b), and (c), the sequential limit does not exist for positive y outside the specified region.

Proof. Since the hyperpower function $x = y^{y^{y^{i}}}$ is the inverse function on the region given in part (a) of the theorem, and it diverges for y > 0 not in the interval $[e^{-e}, e^{1/e}]$, we consider the other two cases.

To prove (b), consider the graph of $y = x^{1/x}$ beyond x = e. This function is decreasing on $[e, \infty)$, and hence there exists for each $y \in (1, e^{1/e}]$, the range, a unique $x \in [e, \infty)$ such that $y = x^{1/x}$. Moreover, $y = x^{1/x}$ is equivalent to $\log_y x = x$, and thus the latter has exactly one solution \overline{x} with $\overline{x} \ge e$. The fixed point equation $\log_y x = x$ motivates the choice of the iterating function $f(x) := \log_y(x) = \ln x / \ln y$, and we consider the sequence obtained by iterating:

$$x_n := f^n(e), \quad n \ge 0.$$

Since $y \le e^{1/e}$, applying the order-preserving function f to both sides we obtain $e \le f(e)$, and thus

$$e \leq f(e) \leq f^2(e) \leq \cdots,$$

an increasing sequence. In addition, since $e \leq \overline{x}$, then $f(e) \leq f(\overline{x}) = \overline{x}$; it follows by induction that $x_n \leq \overline{x}$ for every x_n . Thus the bounded monotone sequence x_n converges to some real number x above e, and by continuity of f, f(x) = x. Since the fixed point is unique, it follows that $\overline{x} = x = \lim_{n \to \infty} (\log_v)^n (e)$.

Now if $y > e^{1/e}$, then y is not in the range of $y = x^{1/x}$, and thus the equation $\log_y x = x$ has no solution. Thus the limit $x = \lim_{n \to \infty} (\log_y)^n(e)$ cannot exist, for otherwise by continuity, $\log_y x = x$. On the other hand, if 0 < y < 1, then $\log_y e = \ln e / \ln y = 1 / \ln y < 0$, and thus $\log_y \log_y e$ is not even defined, and hence the sequence is not defined.

To prove (c), assume that $0 < y < e^{-e}$. Note that

$$0 < y < e^{-e} \Leftrightarrow \ln y < -e \Leftrightarrow \frac{1}{-\ln y} < \frac{1}{e}$$

Since $f(x) = \log_y x = \ln x / \ln y$ is strictly decreasing, hence order-reversing, we have $0 < f(1/e) = -1/\ln y = 1/(-\ln y) < 1/e$. Applying the order-reversing f to the ends of the inequality yields $f^2(1/e) > f(1/e)$. In addition, by the Mean Value Theorem, $f^2(1/e) - f(1/e) = f'(c)(f(1/e) - (1/e))$ for some c, f(1/e) < c < 1/e. Since

$$|f'(c)| = \left|\frac{1}{c\ln y}\right| = \frac{1}{-\ln y} \cdot \frac{1}{c} = f\left(\frac{1}{e}\right) \cdot \frac{1}{c} < c \cdot \frac{1}{c} = 1,$$

© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 108

we conclude that $f^2(1/e) - f(1/e) < (1/e) - f(1/e)$, i.e., $f^2(1/e) < 1/e$. By the order-reversing property of f and induction, we obtain

$$0 < f\left(\frac{1}{e}\right) < f^3\left(\frac{1}{e}\right) < f^5\left(\frac{1}{e}\right) < \cdots, \quad \cdots < f^4\left(\frac{1}{e}\right) < f^2\left(\frac{1}{e}\right) < \frac{1}{e},$$

and $f^{2m+1}(1/e) < f^{2n}(1/e)$ for all non-negative integers m, n. The monotonically decreasing bounded sequence of even powers converges to some b, the monotonically increasing bounded sequence of odd powers converges to some $a \le b$, and by continuity of f, f(a) = b and f(b) = a. If a < b, we can again apply the Mean Value Theorem to the interval [a, b] and conclude that f(a) - f(b) < b - a, a contradiction. Thus a = b is a fixed point for $f(x) = \log_y x$, hence must be the unique fixed point, and $a = \lim_{n \to \infty} (\log_y)^n (1/e)$.

Now if $y \ge 1$, then $\log_y(1/e) = -1/\ln y < 0$, and thus $\log_y \log_y(1/e)$ is not defined. For the case $e^{-e} < y < 1$, let us suppose that the sequence $\{f^n(1/e)\}_{n=1}^{\infty}$ is well-defined and has a unique limit \overline{x} , then we have $\log_y \overline{x} = \overline{x}$, i.e., $y = \overline{x}^{1/\overline{x}}$, and hence the limit of the sequence is located in the interval (1/e, 1). As in the beginning part of the proof of (c), we obtain $f^2(1/e) < 1/e$ from $e^{-e} < y$ by way of $-1/\ln y > 1/e$, f(1/e) > 1/e, |f'(c)| > 1, and $f^2(1/e) - f(1/e) < (1/e) - f(1/e)$, applied in the listed order. Note that $f^2(x) = \log_y \log_y x$ is strictly increasing, so order-preserving, for x in the interval (0, 1). Applying the order-preserving f^2 to $f^2(1/e) < 1/e$, we obtain

$$\cdots < f^6\left(\frac{1}{e}\right) < f^4\left(\frac{1}{e}\right) < f^2\left(\frac{1}{e}\right) < \frac{1}{e}.$$

The sequence $\{f^{2n}(1/e)\}_{n=1}^{\infty}$ also has the same limit \overline{x} , so we have

$$\overline{x} < \frac{1}{e}$$
 and $\overline{x} > \frac{1}{e}$.

From this contradiction, we conclude that the sequence $\{f^n(1/e)\}_{n=1}^{\infty}$ is not well-defined or diverges.

The remaining case $y = e^{-e}$ is trivial to verify.

3. INVERSE FUNCTIONS OF $y = x^x$ AND $y = xe^x$, AND FUNCTIONAL REP-RESENTATIONS OF $w^w = x^x$ AND $x^z = z^x$. Let x = h(y) denote the inverse multifunction of $y = x^{1/x}$, so that h is given by the three types of inverse of $y = x^{1/x}$ in Theorem 1. Then we can represent the inverse function of $y = x^x$ by using of h and a substitution s = 1/x. We see that $y = x^x = 1/s^{1/s}$, so $1/y = s^{1/s}$, hence s = h(1/y). Therefore the inverse function of $y = x^x$ is x = 1/h(1/y). We deduce a result for the inverse functions of $y = x^x$.

Corollary 2. The inverse functions of $y = x^x$ are

$$x = p(y) = \begin{cases} \left(\cdots \log_{\frac{1}{y}} \log_{\frac{1}{y}} \frac{1}{e} \right)^{-1}, & (x \ge e, y \ge e^{e}) \\ y^{\frac{1}{y}}, & \left(\frac{1}{e} \le x \le e, e^{-\frac{1}{e}} \le y \le e^{e} \right) \\ \left(\cdots \log_{\frac{1}{y}} \log_{\frac{1}{y}} e \right)^{-1}, & \left(0 < x \le \frac{1}{e}, e^{-\frac{1}{e}} \le y < 1 \right). \end{cases}$$

December 2001]

NOTES

We know that the inverse multi-function of $y = x^x$ is x = p(y). Then we can represent the inverse function of $y = xe^x$ by using p. We see that $y = xe^x$ converts to $e^y = (e^x)^{(e^x)}$, hence $e^x = p(e^y)$, so we have $x = \ln p(e^y)$. Therefore the inverse multi-function of $y = xe^x$ is $x = \ln p(e^y)$; this inverse function, called Lambert's W-function, is useful in many areas [1]. We conclude with a result for the inverse functions of $y = xe^x$.

Corollary 3. The inverse functions of $y = xe^x$ are

$$x = \begin{cases} -\log_e \left(\cdots \log_{(e^{-y})} \log_{(e^{-y})} \frac{1}{e} \right), & (x \ge 1, y \ge e) \\ y(e^{-y})^{(e^{-y})^{\cdot}}, & \left(-1 \le x \le 1, -\frac{1}{e} \le y \le e \right) \\ -\log_e (\cdots \log_{(e^{-y})} \log_{(e^{-y})} e), & \left(x \le -1, -\frac{1}{e} \le y < 0 \right). \end{cases}$$

Also we can find the full representations of inverse functions of $y = x \ln x$, $y = x + \ln x$, $y = xe^{-x}$, $y = x - \ln x$, $y = x + e^x$, and so on, by similar methods. In particular, the inverse function of $y = x + e^x$ gives an explicit solution of the equation $e^x + x = 0$, namely

$$-\left(\frac{1}{e}\right)^{\left(\frac{1}{e}\right)^{-}}.$$

Next we state the functional representations of $w^w = x^x$ and $x^z = z^x$. These are easily obtained, so we show only the results.

Corollary 4. The functional representations of $w^w = x^x$ are w = x and

$$w = \begin{cases} (x^{x})^{(x^{-x})^{(x^{-x})}}, & x \in \left(0, \frac{1}{e}\right] \\ (\cdots \log_{(x^{-x})} \log_{(x^{-x})} e)^{-1}, & x \in \left[\frac{1}{e}, 1\right). \end{cases}$$

Corollary 5. The functional representations of $z^{1/z} = x^{1/x}$ are z = x and

$$z = \begin{cases} \left(x^{\frac{1}{x}}\right)^{\left(x^{\frac{1}{x}}\right)^{-}}, & x \in [e, \infty) \\ \cdots \log_{\left(x^{\frac{1}{x}}\right)} \log_{\left(x^{\frac{1}{x}}\right)} e, & x \in (1, e]. \end{cases}$$

By the symmetry of $w^w = x^x$, the two representations in Corollary 4 are inverse functions to each other, and similarly for $z^{1/z} = x^{1/x}$.

ACKNOWLEDGEMENTS. We acknowledge our indebtedness to Professor Arthur Knoebel for many helpful suggestions. The first author is supported by the Basic Research Program of Korea Science & Engineering Foundation (grant No. 1999-2-102-002-3).

© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 108]

- R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth, On the Lambert W Function, Adv. Comput. Math. 5 (1996) 329–359.
- 2. R. Arthur Knoebel, Exponentials reiterated, this MONTHLY 88 (1981) 235-252.
- 3. M. Spivak, Calculus, 2nd ed., Publish or Perish, Berkeley, 1980.

University of Seoul, Seoul 130-743, Korea yhcho@uoscc.uos.ac.kr

ITPlus, Inc., FKI bldg. 4F, 28-1 Yoido-dong, Yonugdeungpo-gu, Seoul, Korea pkh@itplus.co.kr

On the Total Edge-Length of a Tetrahedron

Hiroshi Maehara

For a tetrahedron ABCD in \mathbb{R}^3 , let L(ABCD) denote the sum of its edge-lengths. We prove the following:

Theorem 1. Let *R* be the radius of the sphere with minimum volume that encloses a given tetrahedron ABCD. Then $6R < L(ABCD) \le 4\sqrt{6}R$, $L(ABCD) = 4\sqrt{6}R$ only when ABCD is a regular tetrahedron, and L(ABCD) = 6R only in a limit degenerate case such as $A \ne B = C = D$.

Denote the perimeter of a triangle ABC by L(ABC). A similar result for L(ABC) can be obtained easily.

Lemma 1. Let A = (a, 0), B = (-a, 0), $C = (x_0, y_0)$, $y_0 > 0$, be three points in \mathbb{R}^2 . If a point X = (x, y) lies on the circle determined by A, B, C, and if $y > y_0$ then $\overline{AC} + \overline{BC} < \overline{AX} + \overline{BX}$.

Proof. X is exterior to the ellipse with foci A, B that passes through C.

Corollary 1. Let R be the radius of the circle with minimum area that encloses a given triangle ABC in \mathbb{R}^2 . Then $4R < L(ABC) \le 3\sqrt{3}R$, $L(ABC) = 3\sqrt{3}R$ only when ABC is an equilateral triangle, and L(ABC) = 4R only in a limit degenerate case.

Proof. Let Γ be the circle with minimum area that encloses the triangle *ABC* in the plane, and let *O* be its center. (Γ might not be the circumscribed circle of the triangle *ABC*.) Then *O* lies either inside the triangle *ABC* or on a side of *ABC*. First, consider the case that *O* lies on a side, say, on the side *AB*. Then $\overline{AB} = 2R$ and $\overline{AC} + \overline{CB} > \overline{AB}$. Hence L(ABC) > 4R. Next, suppose that *O* is interior to the triangle *ABC*. We may put $A = (a, 0), B = (-a, 0), C = (x_1, y_1), y_1 > 0$. Let *AC'* be a diameter of Γ , and let $C' = (x_0, y_0)$. Then, since *O* is interior to $\triangle ABC$, it follows that $0 < y_0 < y_1$. Hence Lemma 1 ensures that L(ABC) > L(ABC'). Since *O* lies on *AC'*, it follows that L(ABC') > 4R. Hence L(ABC) > 4R.

December 2001]

NOTES