A Simple Proof of $1+1 / 22+1 / 32+\cdots=\pi^{2} / 6$ and Related Identities Author(s): Josef Hof bauer
Source: The American Mathematical Monthly, Vol. 109, No. 2 (Feb., 2002), pp. 196-200
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2695334
Accessed: 15/10/2014 10:31

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.
duces that $A_{n} \subseteq U_{G}$. Let $\left(c_{k}, d_{k}\right)$ denote the components of U_{G}. By the lemma one has $G\left(c_{k}\right) \geq G\left(d_{k}\right)$ for each k and hence $m^{*}\left(E \cap\left(c_{k}, d_{k}\right)\right) \leq n\left(d_{k}-c_{k}\right) /(n+1)$. By (P2), (P1), and (P3) one thus obtains

$$
m^{*}\left(A_{n}\right) \leq \sum_{k} m^{*}\left(A_{n} \cap\left(c_{k}, d_{k}\right)\right) \leq \sum_{k} \frac{n}{n+1}\left(d_{k}-c_{k}\right)=\frac{n}{n+1} m^{*}\left(U_{G}\right) .
$$

Therefore $m^{*}\left(A_{n}\right)<n\left(m^{*}\left(A_{n}\right)+\varepsilon\right) /(n+1)$, which implies that $m^{*}\left(A_{n}\right)<n \varepsilon$. The assertion follows because ε is arbitrary.

By symmetry, the set $B:=\left\{x \in E / \underline{d}_{-}(E, x)<1\right\}$ also has outer measure zero. Hence $\underline{d}_{+}(E, x) \underline{\underline{d}}_{-}(E, x)=1$ for almost all $x \in E$, and the proof of Lebesgue's theorem is complete.

REFERENCES

1. H. Lebesgue, Lȩ̧ons sur l'Intégration et la Recherche des Fonctions Primitives, Gauthier Villars, Paris, 1904.
2. B. Maurey and J.-P. Tacchi, A propos du théorème de densité de Lebesgue, Travaux mathématiques, Fasc. IX, Sém. Math. Luxembourg, Luxembourg, 1997, pp. 1-21.
3. F. Riesz, Sur l'existence de la dérivée des fonctions monotones et sur quelques problèmes qui s'y rattachent, Acta Sci. Math. 5 (1930-1932) 208-221.
4. A. C. M. van Rooij and W. H. Schikhof, A Second Course on Real Functions, Cambridge University Press, Cambridge, 1982.
5. W. Sierpiński, Démonstration élémentaire du théorème sur la densité des ensembles, Fund. Math. 4 (1923) 167-171.
6. L. Zajíček, An elementary proof of the one-dimensional density theorem, Amer. Math. Monthly 86 (1979) 297-298.

Lycée cantonal de Porrentruy, place Blarer-de-Wartensee 2, CH-2900 Porrentruy, Switzerland cafaure@bluewin.ch

A Simple Proof of $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$ and Related Identities

Josef Hofbauer

1. A PROOF FOR

$$
\begin{equation*}
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6} \tag{1}
\end{equation*}
$$

Repeated application of the identity

$$
\begin{equation*}
\frac{1}{\sin ^{2} x}=\frac{1}{4 \sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}}=\frac{1}{4}\left[\frac{1}{\sin ^{2} \frac{x}{2}}+\frac{1}{\cos ^{2} \frac{x}{2}}\right]=\frac{1}{4}\left[\frac{1}{\sin ^{2} \frac{x}{2}}+\frac{1}{\sin ^{2} \frac{\pi+x}{2}}\right] \tag{2}
\end{equation*}
$$

yields

$$
\begin{align*}
1 & =\frac{1}{\sin ^{2} \frac{\pi}{2}}=\frac{1}{4}\left[\frac{1}{\sin ^{2} \frac{\pi}{4}}+\frac{1}{\sin ^{2} \frac{3 \pi}{4}}\right] \\
& =\frac{1}{16}\left[\frac{1}{\sin ^{2} \frac{\pi}{8}}+\frac{1}{\sin ^{2} \frac{3 \pi}{8}}+\frac{1}{\sin ^{2} \frac{5 \pi}{8}}+\frac{1}{\sin ^{2} \frac{7 \pi}{8}}\right]=\cdots \\
& =\frac{1}{4^{n}} \sum_{k=0}^{2^{n}-1} \frac{1}{\sin ^{2} \frac{(2 k+1) \pi}{2^{n+1}}} \tag{3}\\
& =\frac{2}{4^{n}} \sum_{k=0}^{2^{n-1}-1} \frac{1}{\sin ^{2} \frac{(2 k+1) \pi}{2^{n+1}}} . \tag{4}
\end{align*}
$$

Taking the termwise limit $n \rightarrow \infty$ and using $\lim _{N \rightarrow \infty} N \sin (x / N)=x$ for $N=2^{n}$ and $x=(2 k+1) \pi / 2$ yields the series

$$
\begin{equation*}
1=\frac{8}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}, \tag{5}
\end{equation*}
$$

from which (1) follows easily.
Now taking the limit termwise requires some care, as the example $1=1 / 2+$ $1 / 2=1 / 4+1 / 4+1 / 4+1 / 4=\cdots \rightarrow 0+0+0 \cdots=0$ shows. In the above case $(4) \rightarrow(5)$ it is justified because the k th term in the sum (4) is bounded by $2 /(2 k+1)^{2}$ (independently of n) $\operatorname{since} \sin x>2 x / \pi$ holds for $0<x<\pi / 2$.

The argument in the last step (i.e., interchanging limit and summation) is known as Tannery's Theorem (see [16, p. 292], [5], or [4]); we present it in an appendix at the end of this Note. It is instructive here to check that (and why) the termwise limit (3) \rightarrow (5) fails.

Use of Tannery's Theorem can be avoided by the following elementary argument: Sum the inequalities $\sin ^{-2} x>x^{-2}>\cot ^{2} x=\sin ^{-2} x-1$ (which follow from $\sin x<x<\tan x$ for $0<x<\pi / 2)$ for $x=(2 k+1) \pi /(2 N)$ with $k=0, \ldots, N / 2-$ 1. Then (4) implies

$$
1>\frac{8}{\pi^{2}} \sum_{k=0}^{N / 2-1} \frac{1}{(2 k+1)^{2}}>1-\frac{1}{N},
$$

for $N=2^{n}$, and hence (5).
2. RELATED PROOFS. The proof in Section 1 was inspired by two related proofs (\# 9 and \# 10) among the 14 proofs of Euler's identity (1) collected by Chapman [6], and the identity

$$
\begin{equation*}
\sum_{k=0}^{N-1} \frac{1}{\sin ^{2} \frac{(2 k+1) \pi}{2 N}}=N^{2} \tag{6}
\end{equation*}
$$

which I encountered 25 years ago as a mathematics olympiad problem [2]. A proof for (6) for general N is in Section 3. These two related proofs use instead the identities

$$
\begin{equation*}
\sum_{k=1}^{N} \cot ^{2} \frac{k \pi}{2 N+1}=\frac{N(2 N-1)}{3} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{N} \frac{1}{\sin ^{2} \frac{k \pi}{2 N+1}}=\frac{2 N(N+1)}{3} \tag{8}
\end{equation*}
$$

These identities (6)-(8) are usually proved by comparing the coefficients in a suitable polynomial of degree N whose zeroes are the terms of the sums. This way to prove (1) via (7) or (8) is described in detail in [5, ch. IX] (which also has (6)) and [17, ch. X], and was rediscovered in [8], [12], and [13].

The only new (?) feature in the present proof is the restriction to $N=2^{n}$ where (6) allows a simpler argument.

For other (more or less) elementary proofs of (1) see [1], [3], [6], [7], [9], [11], [12], and [15], and references therein. There is an interesting historical account in [15].
3. THE PARTIAL FRACTION EXPANSION OF $\sin ^{-2} \boldsymbol{x}$. The identity (6) is a special case ($x=\pi / 2$) of

$$
\begin{equation*}
\frac{1}{\sin ^{2} x}=\frac{1}{N^{2}} \sum_{k=0}^{N-1} \frac{1}{\sin ^{2} \frac{x+k \pi}{N}} \tag{9}
\end{equation*}
$$

This identity follows for $N=2^{n}$ in the same way as in Section 1, starting from $\sin ^{-2} x$. Writing it as

$$
\frac{1}{\sin ^{2} x}=\frac{1}{N^{2}} \sum_{k=-N / 2}^{N / 2-1} \frac{1}{\sin ^{2} \frac{x+k \pi}{N}}
$$

yields the partial fraction expansion of $\sin ^{-2} x$ in the limit $N \rightarrow \infty$:

$$
\begin{equation*}
\frac{1}{\sin ^{2} x}=\sum_{k \in \mathbb{Z}} \frac{1}{(x+k \pi)^{2}}, \tag{10}
\end{equation*}
$$

from which (9) can be verified for arbitrary N in turn. As pointed out by the referee, identity (8) can be derived from (9) by taking the limit $x \rightarrow 0$, and replacing N by $2 N+1$.

This is a funny variation of Cauchy's original induction proof for the inequality of the arithmetic and geometric mean: To prove the identity (9) for arbitrary natural numbers N, we first prove it by an induction $n \rightarrow 2 n$ for all powers of 2: $N=2^{n}$. Then we take the limit $n \rightarrow \infty$ to obtain the infinite series (10), from which the formula follows for every finite N.

4. THE GREGORY-LEIBNIZ SERIES. The fact that

$$
\begin{equation*}
1-\frac{1}{3}+\frac{1}{5}-+\cdots=\frac{\pi}{4} \tag{11}
\end{equation*}
$$

can be proved in a similar fashion. We use the identity

$$
\cot x=\frac{1}{2}\left[\cot \frac{x}{2}-\tan \frac{x}{2}\right]=\frac{1}{2}\left[\cot \frac{x}{2}-\cot \left(\frac{\pi-x}{2}\right)\right]
$$

instead of (1). Then

$$
\begin{aligned}
1 & =\cot \frac{\pi}{4}=\frac{1}{2}\left[\cot \frac{\pi}{8}-\cot \frac{3 \pi}{8}\right] \\
& =\frac{1}{4}\left[\cot \frac{\pi}{16}-\cot \frac{7 \pi}{16}-\cot \frac{3 \pi}{16}+\cot \frac{5 \pi}{16}\right]=\cdots \\
& =\frac{1}{N} \sum_{k=0}^{N-1}(-1)^{k} \cot \frac{(2 k+1) \pi}{4 N} \quad\left(\text { for } N=2^{n}\right) .
\end{aligned}
$$

Taking the limit $N \rightarrow \infty$ and using $(1 / N) \cot (x / N) \rightarrow 1 / x$ yields

$$
1=\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} .
$$

This series is not absolutely convergent. Still, Tannery's Theorem applies after combining two consecutive terms, e.g., using the formula $\cot \alpha-\cot \beta=\sin (\beta-$ $\alpha) / \sin \alpha \sin \beta$.

More generally, the partial fraction expansion of $\cot x$ can be derived in a similar way; see [10, § 24] or [14].

Appendix: Tannery's Theorem. If $s(n)=\sum_{k \geq 0} f_{k}(n)$ is a finite sum (or a convergent series) for each $n, \lim _{n \rightarrow \infty} f_{k}(n)=f_{k},\left|f_{k}(n)\right| \leq M_{k}$, and $\sum_{k=0}^{\infty} M_{k}<\infty$ then

$$
\lim _{n \rightarrow \infty} s(n)=\sum_{k=0}^{\infty} f_{k} .
$$

Proof. For any given $\varepsilon>0$ there is an $N(\varepsilon)$ such that $\sum_{k>N(\varepsilon)} M_{k}<\varepsilon / 3$. For each k there is an $N_{k}(\varepsilon)$ such that $\left|f_{k}(n)-f_{k}\right|<\varepsilon /(3 N(\varepsilon))$ for all $n \geq N_{k}(\varepsilon)$. Let $\bar{N}(\varepsilon)=$ $\max \left\{N_{1}(\varepsilon), \ldots, N_{N(\varepsilon)}(\varepsilon)\right\}$. Then

$$
\left|s(n)-\sum_{k} f_{k}\right| \leq \sum_{k=0}^{N(\varepsilon)}\left|f_{k}(n)-f_{k}\right|+2 \sum_{\cdot k>N(\varepsilon)} M_{k}<N(\varepsilon) \frac{\varepsilon}{3 N(\varepsilon)}+2 \frac{\varepsilon}{3}=\varepsilon
$$

for all $n \geq \bar{N}(\varepsilon)$.
A standard application of Tannery's Theorem is to show that the two usual definitions of e^{x} are the same:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k} \frac{x^{k}}{n^{k}}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} .
$$

Tannery's Theorem is related to the M-test of Weierstrass: Let $f_{k}: D \rightarrow \mathbb{R}$ be a sequence of functions, $\left|f_{k}(x)\right| \leq M_{k}, \sum_{k} M_{k}<\infty$. Then $s(x)=\sum_{k} f_{k}(x)$ converges uniformly, and if each f_{k} is continuous, then s is continuous.

With the domain $D=\{1,2, \ldots, \infty\}$ the continuity at ∞ of f_{k} and s yields Tannery's Theorem.

Tannery's Theorem is also a special case of Lebesgue's dominated convergence theorem on the sequence space ℓ^{1}.

REFERENCES

1. M. Aigner and G. M. Ziegler, Proofs from THE BOOK, Springer-Verlag, Berlin, 1998.
2. Alpha 8 (3) (1974) 60.
\rightarrow T. M. Apostol, A proof that Euler missed: Evaluating ζ (2) the easy way, Math. Intelligencer 5 (1983) 59-60.
\rightarrow R. P. Boas, Tannery's theorem, Math. Mag. 38 (1965) 66.
3. T. J. l'A. Bromwich, An Introduction to the Theory of Infinite Series, 2nd ed., Macmillan, London, 1949.
4. R. Chapman, Evaluating $\zeta(2)$, Preprint, 1999, http://www.maths.ex.ac.uk/~rjc/etc/zeta2.dvi.
\rightarrow D. P. Giesy, Still another elementary proof that $\sum 1 / k^{2}=\pi^{2} / 6$, Math. Mag. 45 (1972) 148-149.
5. F. Holme, En enkel beregning av $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$, Normat 18 (1970) 91-92.
\rightarrow D. Kalman, Six ways to sum a series, College Math. J. 24 (1993) 402-421.
6. K. Knopp, Theorie und Anwendung der unendlichen Reihen, Springer-Verlag, Berlin, 1931.
7. K. Knopp and I. Schur, Über die Herleitung der Gleichung $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, Archiv Math. Physik 17 (1918) 174-176.
$1 \rightarrow$ R. A. Kortram, Simple proofs for $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$ and $\sin x=x \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2} \pi^{2}}\right)$, Math. Mag. 69 (1996) 122-125.
$1 \rightarrow$ I. Papadimitriou, A simple proof of the formula $\sum_{k=1}^{\infty} k^{-2}=\pi^{2} / 6$, Amer. Math. Monthly $\mathbf{8 0}$ (1973) 424-425.
8. H. Schröter, Ableitung der Partialbruch- und Produkt-Entwicklungen für die trigonometrischen Funktionen, Z. Math. Physik 13 (1868) 254-259.
9. P. Stäckel, Eine vergessene Abhandlung Leonhard Eulers über die Summe der reziproken Quadrate der natürlichen Zahlen, Bibliotheka mathematica III (8) (1907) 37-60.
10. J. Tannery, Introduction a la Théorie des Fonctions d'une Variable, 2 ed., Tome 1, Libraire Scientifique A. Hermann, Paris, 1904.
11. A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol. II, Dover, New York, 1967.

Universität Wien, A-1090 Vienna, Austria
Josef.Hofbauer@univie.ac.at

