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duces that A, € Ug. Let (¢, di) denote the components of Ug. By the lemma one has
G(ci) = G(dy) for each k and hence m*(E N (¢, dy)) < n(dy —c)/(mn + 1). By (P2),
(P1), and (P3) one thus obtains

n
n—+1

m(A) < Y m (A O d)) < Y —(dy — ) = ——m"(Us).
T - n+1

Therefore m*(A,) < n(m*(A,) + &)/(n + 1), which implies that m*(A,) < ne. The
assertion follows because ¢ is arbitrary. |

By symmetry, the set B := {x € E/d _(F,x) < 1} also has outer measure zero.
Hence d , (E,x) =d_(E,x) = 1 for almost all x € E, and the proof of Lebesgue’s

theorem is complete.
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and Related Identities

Josef Hofbauer
1. A PROOF FOR
1 1 w2
14+ — F — Feee = —, 1
+ > + gD + G (D

Repeated application of the identity

I 1 1 1 1 1 1 1 )
sin®x  4sin® 3 cos? 3 " 4| sin? 5 cos?Z 4 | sin? z sin? ”_Jzﬂ
yields
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Taking the termwise limit # — oo and using limy_, N sin(x/N) = x for N = 2"
and x = (2k + 1)7r/2 yields the series

BT Z (2k + 1)?° ®)

from which (1) follows easily.

Now taking the limit termwise requires some care, as the example 1 = 1/2 +
1/2=1/4+1/44+1/4+1/4=---—> 0+0+0--. =0 shows. In the above case
(4) — (5) it is justified because the kth term in the sum (4) is bounded by 2/(2k + 1)?
(independently of ) since sinx > 2x/m holds for 0 < x < m /2. |

The argument in the last step (i.e., interchanging limit and summation) is known
as Tannery’s Theorem (see [16, p. 292], [5], or [4]); we present it in an appendix at
the end of this Note. It is instructive here to check that (and why) the termwise limit
3) — (5) fails.

Use of Tannery’s Theorem can be avoided by the following elementary argu-
ment: Sum the inequalities sin ™2 x > x~2 > cot? x = sin">x — 1 (which follow from
sinx < x < tanx for0 < x < m/2)forx = 2k + D)n/(2N) withk =0, ..., N/2 —
1. Then (4) implies

8 N/2—-1 1 1
2 s 1-—,
iz kZz(; Qk+12 N

for N = 2", and hence (5).

2. RELATED PROOFS. The proof in Section 1 was inspired by two related proofs
(# 9 and # 10) among the 14 proofs of Euler’s identity (1) collected by Chapman [6],
and the identity

N—1
a2
2 @kiDm = N7, 6)

=0 sin N

which I encountered 25 years ago as a mathematics olympiad problem [2]. A proof
for (6) for general N is in Section 3. These two related proofs use instead the identities
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N+1 3
and
N
1 2N(N+ 1)
Y =T ®)
k=1 SI 5y

These identities (6)—(8) are usually proved by comparing the coefficients in a suitable
polynomial of degree N whose zeroes are the terms of the sums. This way to prove (1)
via (7) or (8) is described in detail in [5, ch. IX] (which also has (6)) and [17, ch. X],
and was rediscovered in [8], [12], and [13].

The only new (?) feature in the present proof is the restriction to N = 2" where (6)
allows a simpler argument.

For other (more or less) elementary proofs of (1) see [1], [3], [6], [7], [9], [11], [12],
and [15], and references therein. There is an interesting historical account in [15].

3. THE PARTIAL FRACTION EXPANSION OF sin2x. The identity (6) is a spe-
cial case (x = 7r/2) of

1 1= 1 ©
-2 T A2 i 2 gtk
sin“x N2 4= sin” £5F
This identity follows for N = 2" in the same way as in Section 1, starting from sin™2 x.

Writing it as

1 1 NE! 1

-2 2 -2 xtkn
sinx  N*, 7, sin” 25

yields the partial fraction expansion of sin~? x in the limit N — oo:

1 1
- Z (x + km)?’ (10)

s 2
s~ x kel

from which (9) can be verified for arbitrary N in turn. As pointed out by the referee,
identity (8) can be derived from (9) by taking the limit x — 0, and replacing N by
2N + 1.

This is a funny variation of Cauchy’s original induction proof for the inequality
of the arithmetic and geometric mean: To prove the identity (9) for arbitrary natural
numbers N, we first prove it by an induction n — 2n for all powers of 2: N = 2". Then
we take the limit # — 00 to obtain the infinite series (10), from which the formula
follows for every finite N.

4. THE GREGORY-LEIBNIZ SERIES. The fact that

1 1 b4
l— 4+ ... .= 11
3tz 1 1)
can be proved in a similar fashion. We use the identity
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cot —l[otx ta x]—l cotZ —cot [ F=2
= TR T 2| 2

instead of (1). Then

l—cotn = ! cotn cot3n
T4 2

8 8
1 cot il cot Iz — cot 3 —+ cot o7 =
16 16 16 6]

k
X}lv g Gkt D +)” (for N = 2).
Taking the limit N — oo and using (1/N) cot(x/N) — 1/x yields

_42"’:( D"
_nk0%+1

This series is not absolutely convergent. Still, Tannery’s Theorem applies after
combining two consecutive terms, e.g., using the formula cota — cot 8 = sin(8 —
o)/ sina sin B.

More generally, the partial fraction expansion of cotx can be derived in a similar
way; see [10, § 24] or [14].

Appendix: Tannery’s Theorem. If s(n) = Zkzo fi(n) is a finite sum (or a conver-
gent series) for each n, lim,_, oo fr(n) = fi, | fr(n)| < My, and Z/fio M, < oo then

lim s(n) = Y fi.
n—>oo =0

Proof. For any given & > 0 there is an N (¢) such that ) v, My < &/3. For each k

there is an Ny(¢) such that | fy(n) — fi| < /(3N (¢)) for all n > Ni(¢). Let N(e) =
max{N;(e), ..., Nye(e)}. Then

N(e)
5 () — ;fu < ; | fem) — fil +24k§(€)Mk <NONE +2g=e
foralln > N(g). "

A standard application of Tannery’s Theorem is to show that the two usual defini-
tions of e* are the same:

(o) k

i (142) = im () =L

Tannery’s Theorem is related to the M-test of Weierstrass: Let fy : D — R be a
sequence of functions, | f(x)| < My, Y, My < 00. Then s(x) =Y, fi(x) converges
uniformly, and if each fy is continuous, then s is continuous.
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With the domain D = {1, 2, ..., oo} the continuity at co of f; and s yields Tan-
nery’s Theorem.

Tannery’s Theorem is also a special case of Lebesgue’s dominated convergence
theorem on the sequence space £'.
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