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duces that A, C UG. Let (Ck, dk) denote the components of UG. By the lemma one has 
G(ck) > G(dk) for each k and hence m* (E n (Ck, dk)) < n(dk -Ck)/(n + 1). By (P2), 
(Pl), and (P3) one thus obtains 

n n 
m*(An) < 2 m* (An n(Ck, dk)) < En (dk -Ck) = m(UG) 

k kn-in i 

Therefore m*(An) < n(m*(An)+ s )/(n + 1), which implies that m*(An) < ns. The 
assertion follows because s is arbitrary. E 

By symmetry, the set B := {x E E/d _(E, x) < 11 also has outer measure zero. 
Hence d +(E, x) = d _(E, x) = 1 for almost all x E E, and the proof of Lebesgue's 
theorem is complete. 
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A Simple Proof of 1 + 22 + 32 + 6 
and Related Identities 

Josef Hofbauer 

1. A PROOF FOR 

1 1~~~~~r 
1 + 22 + 32 + * * * = 6 . (1) 

Repeated application of the identity 

sin2x 4sin2 X COS2 X 4 sin x cos2 4 4 sin 2 sin 2 jx 

yields 
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1~~~ 1 
s=in2 n=4 s in2 

n + sin 2 3n ] 

16 sin n8 sin 38 sin2 5n +sin 7= 

1 2n-1 1 

4n- E, s2 (2k+1)7 .. (3) 
k=O sin 2n+1 

2 2n-1_1 1 

4n E, sin2 (2k+1l)n .. 

Taking the termwise limit n -> oc and using limN+O N sin(x/N) = x for N =2n 
and x = (2k + 1)7r/2 yields the series 

72 Y, (2k + 1)2 

from which (1) follows easily. 
Now taking the limit termwise requires some care, as the example 1 = 1/2 + 

1/2 =1/4 + 1/4 + 1/4 + 1/4 = - * * > 0 + 0 + 0 *.* = 0 shows. In the above case 
(4) - (5) it is justified because the kth term in the sum (4) is bounded by 2/(2k + 1)2 
(independently of n) since sinx > 2x/ir holds for 0 < x < 7r/2. U 

The argument in the last step (i.e., interchanging limit and summation) is known 
as Tannery's Theorem (see [16, p. 292], [5], or [4]); we present it in an appendix at 
the end of this Note. It is instructive here to check that (and why) the termwise limit 
(3) -> (5) fails. 

Use of Tannery's Theorem can be avoided by the following elementary argu- 
ment: Sum the inequalities sin-2 x > x-2 > cot2 x = sin-2 x - 1 (which follow from 
sinx < x < tanx for 0 < x < 7r/2) for x = (2k + 1)7r/(2N) with k = 0, ..., N/2- 
1. Then (4) implies 

8 N/2-1 1 1 
7 - 2 E (2k+ 1)2 N 

for N = 2n, and hence (5). 

2. RELATED PROOFS. The proof in Section 1 was inspired by two related proofs 
(# 9 and # 10) among the 14 proofs of Euler's identity (1) collected by Chapman [6], 
and the identity 

N-1 

L . 2 (2k+1)7 = N2, (6) 
k sin 2N 

which I encountered 25 years ago as a mathematics olympiad problem [2]. A proof 
for (6) for general N is in Section 3. These two related proofs use instead the identities 
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N k N(2N - 1)(7 
Lcot22Nl73 

k= 2N + 1 3 

and 

N 1 2N(N + 1) (8) 
L, 2 kw7 - 3 

k=1-in51 2N+13 

These identities (6)-(8) are usually proved by comparing the coefficients in a suitable 
polynomial of degree N whose zeroes are the terms of the sums. This way to prove (1) 
via (7) or (8) is described in detail in [5, ch. IX] (which also has (6)) and [17, ch. X], 
and was rediscovered in [8], [12], and [13]. 

The only new (?) feature in the present proof is the restriction to N = 2n where (6) 
allows a simpler argument. 

For other (more or less) elementary proofs of (1) see [1], [3], [6], [7], [9], [11], [12], 
and [15], and references therein. There is an interesting historical account in [15]. 

3. THE PARTIAL FRACTION EXPANSION OF sin-2 x. The identity (6) is a spe- 
cial case (x = r/2) of 

1 1 _ _N-1 

sin2 x N2 2 sin2x+k7r (9) 

This identity follows for N = 2 n in the same way as in Section 1, starting from sin-2 x. 
Writing it as 

1 = 1 N/2-1 1 
N2- _L . xk 

sin x N2 k- n 22xsin + 

yields the partial fraction expansion of sin-2 x in the limit N -- oc: 

1 1 

sin X kE (x + k7r)2' (10) 

from which (9) can be verified for arbitrary N in turn. As pointed out by the referee, 
identity (8) can be derived from (9) by taking the limit x -- 0, and replacing N by 
2N+ 1. 

This is a funny variation of Cauchy's original induction proof for the inequality 
of the arithmetic and geometric mean: To prove the identity (9) for arbitrary natural 
numbers N, we first prove it by an induction n -> 2n for all powers of 2: N = 2n. Then 
we take the limit n -> oo to obtain the infinite series (10), from which the formula 
follows for every finite N. 

4. THE GREGORY-LEIBNIZ SERIES. The fact that 

1 V 
1 - + - - + . = - (11) 

3 5 4 

can be proved in a similar fashion. We use the identity 
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1r x xl x 7r -XA 
cotx = 2 [cot -tan2j = 2 cot 2-cot t x)] 

instead of (1). Then 

7r 1 7r 37r 
1 = cot = 2 cot 8 - cot#81 

1 7r 77r 37r 57r- 
4 cot - cot - - cot - + cot 
4L 16 16 16 161 

1N-i (2k +1)7r (oN2) 
= N ,(-1)k cot 4N(for N =2'). 

NL() ~4N 
k=O 

Taking the limit N oo and using (1/N) cot(x/N) -> l/x yields 

1 4 0 ( 1)k 

lLE 2k + 1? 

This series is not absolutely convergent. Still, Tannery's Theorem applies after 
combining two consecutive terms, e.g., using the formula cota - cot,B = sin(B - 

a))/ sin a sin ,. 
More generally, the partial fraction expansion of cot x can be derived in a similar 

way; see [10, ? 24] or [14]. 

Appendix: Tannery's Theorem. If s (n) = 1k>o fk(n) is a finite sum (or a conver- 
gent series) for each n, limn,O fk(n) = fk, I fk(n)l < Mk, and Y' = Mk < oc then 

00 

lim s(n) = Lfk. 
n-oo 00 

k= 

Proof. For any given 8 > 0 there is an N(8) such that >Zk>N(,) Mk < s/3. For each k 

there is an Nk(s) such that Ifk(n) - fkl < /(3N(s)) for all n > Nk(s). Let N(s) = 

max{N1(s), ..., NN (s)}. Then 

N(s) 

ls(n) -L fk l fk(n) -fk |+2 Mk < N() 3N( ) 23 = 

for all n > N(s). U 

A standard application of Tannery's Theorem is to show that the two usual defini- 
tions of ex are the same: 

lim (1 + -) ilM E ()k = E k! n k=0 \/n k=O k 

Tannery's Theorem is related to the M-test of Weierstrass: Let fk: D -> IR be a 
sequence offunctions, I fk (x) I < Mk, >Zk Mk < oc. Then s (x) = >Zk fk (x) converges 
uniformly, and if each fk is continuous, then s is continuous. 
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With the domain D = { 1, 2, .. ., ooI the continuity at oo of fk and s yields Tan- 
nery's Theorem. 

Tannery's Theorem is also a special case of Lebesgue's dominated convergence 
theorem on the sequence space e 1. 
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