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What Is Wrong With the Definition
of dy /dx?

Hugh Thurston

We shall use the notations dy/dx and f'(x) freely and interchangeably. [1]
The fact that dy /dx and f'(x) are not interchangeable is evident when you consider that one
does not write dy/d3 for f'(3). [2]

For a start, the definition is incomplete. It is always a good idea to know what we
are talking about, but definitions of dy/dx do not say what the x and y are; in
contrast, definitions of f’(x) make it clear that f is a function and x a number.

Secondly, the definition is ambiguous. Most texts describe dy/dx as another
notation for f'(x) where y = f(x). For this to be valid they should prove that if
f(x) = g(x) then f’(x)=g'(x), but they don’t. Indeed, it is hard to prove
anything about dy/dx without knowing what x and y are. All we can say for
certain is that they are not numbers: f'(3) cannot be denoted by dy/d3.

Ambiguity breeds paradox. Whatever x may be, it is something that has
values: in the familiar formula dy/dx|,-., ¢ is a value of x. Moreover, y can be
constant; we all know that if y is constant then dy/dx is zero. The formula

dx dy

dy 1 dx

shows that x and y are the same kind of entity, so in principle x can be constant.
Suppose that x is constant with value 1. Then x? = x3, dx?/dx = dx3/dx, and
2x = 3x2. But 2x has value 2 and 3x? has value 3. The obvious objection is that it
is nonsense to differentiate with respect to a constant—we cannot have a rate of
change with respect to something that is not changing. This objection may be
obvious, but it is not valid; if x cannot be constant in dy/dx there should be
something in the definition that implies this.

So what are x and y? We can take a hint from the fact that they have values.
There is a familiar entity that has values—the function. Or we can make the
reasonable suggestion that the x and y in dy/dx are the same as in dx and dy. In
the modern (Fréchet) theory of differentials, x and y are functions. We don’t
apply Fréchet theory to elementary calculus, but if we did the x and y would be
the familiar type of function whose values and arguments are real numbers. From
now on by “function” I shall mean this type of function.

Now what is dy/dx? First, look to Leibniz. His dx was an infinitesimal
increment in x. An increment in x is x(c + A) — x(¢) and the corresponding
increment in y is y(¢ + h) — y(c). Then the value of dy/dx at c is

y(c +h) —y(c)
x(c +h) —x(c)

1)
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where A is infinitesimal. Nowadays instead of having 4 infinitesimal we have it
approach zero. Then (1) becomes y’(c)/x'(c) if x and y are differentiable at ¢ and
x'(c) # 0.

We find the same result if we consider tangents: the slope of a secant of the
graph of y against x is (1), and the slope of the tangent is its limit. Rates of
change lead to the same result: if x and y represent two quantities that vary with
time the average rate of change of the second quantity with respect to the first
between times ¢ and ¢ + A is (1) and the instantaneous rate of change is its limit.

All this suggests the following definition.

Definition. If x and y are functions, dy/dx is y'/x’.

From this definition we can prove the familiar rules of differentiation, no longer
as mere rules but as properly-stated theorems. It is convenient to use the
not-uncommon figures of speech “f exists at ¢” for “f(c) exists” and “f = g at ¢”
for “f(c) = g(c)”.

For example

Theorem (chain rule). If x, y and z are functions,

dz dz dy
dc ~ dy dx
wherever the right-hand side exists.

Proof: If the right-hand side exists at ¢, then

dz dy dz _dy Z(e)y'(¢) zZ'(c) dz
55)©- 50507 GnG 7o &

We can also say clearly and definitely:
Theorem. If x is constant, dy /dx does not exist anywhere.
Proof: x' has the value 0.

Theorem. If x is increasing on an interval I and dy/dx is negative on I then y is
decreasing on 1.

There are analogaous results if x is decreasing or dy /dx is positive or both. The
proofs are obvious.

Our definition legitimizes the use of parametric and implicit differentiation. For
example,

x(t) =2cost,y(t) =sint
is a parametrization of the ellipse x> + 4y? = 4. We have
y'(1) cos ¢
X'(t)  2sint’

dy
=0 =

giving the slope at (2 cos ¢, sin ¢). This calculation, and the corresponding implicit
one, occur in texts, but in any text which defines dy/dx only where y is a function
of x they are necessarily invalid.
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Finally how does our definition relate to the traditional one? First, what is f(x)
if x is a function? It is the function ¢ — f(x(¢)). For example, the speed of a body
moving with positive acceleration is a function of the distance covered: if y denotes
the speed and x the distance, then y = f(x) for some f. (If the acceleration a is
constant, f(x) = y(2ax).) At time ¢, when the distance is x(¢), the speed is
f(x(2)), so that y(t) = f(x(¢)).

It follows that if y = f(x) then y’ = f'(x)x’ wherever the right-hand side exists,
and so dy/dx = f'(x) wherever the right-hand side exists and x’ has a non-zero
value.

Adopting the definition suggested here would not alter the well-known and
universally-accepted formulas involving the Leibnizian derivative, but it would give
them a sound basis.
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PICTURE PUZZLE
(from the collection of Paul Halmos)

They frequently collaborated, but these photos were taken far apart:
the first in 1986 and the second in 1938.
(see page 923.)
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