What is Wrong with the Definition of $d y / d x$?
Author(s): Hugh Thurston
Reviewed work(s):
Source: The American Mathematical Monthly, Vol. 101, No. 9 (Nov., 1994), pp. 855-857
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2975132
Accessed: 14/12/2012 04:56

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

What Is Wrong With the Definition of $d y / d x$?

Hugh Thurston

We shall use the notations $d y / d x$ and $f^{\prime}(x)$ freely and interchangeably. [1]
The fact that $d y / d x$ and $f^{\prime}(x)$ are not interchangeable is evident when you consider that one does not write $d y / d 3$ for $f^{\prime}(3)$. [2]

For a start, the definition is incomplete. It is always a good idea to know what we are talking about, but definitions of $d y / d x$ do not say what the x and y are; in contrast, definitions of $f^{\prime}(x)$ make it clear that f is a function and x a number.

Secondly, the definition is ambiguous. Most texts describe $d y / d x$ as another notation for $f^{\prime}(x)$ where $y=f(x)$. For this to be valid they should prove that if $f(x)=g(x)$ then $f^{\prime}(x)=g^{\prime}(x)$, but they don't. Indeed, it is hard to prove anything about $d y / d x$ without knowing what x and y are. All we can say for certain is that they are not numbers: $f^{\prime}(3)$ cannot be denoted by $d y / d 3$.

Ambiguity breeds paradox. Whatever x may be, it is something that has values: in the familiar formula $d y /\left.d x\right|_{x=c}, c$ is a value of x. Moreover, y can be constant; we all know that if y is constant then $d y / d x$ is zero. The formula

$$
\frac{d x}{d y}=1 / \frac{d y}{d x}
$$

shows that x and y are the same kind of entity, so in principle x can be constant. Suppose that x is constant with value 1 . Then $x^{2}=x^{3}, d x^{2} / d x=d x^{3} / d x$, and $2 x=3 x^{2}$. But $2 x$ has value 2 and $3 x^{2}$ has value 3 . The obvious objection is that it is nonsense to differentiate with respect to a constant-we cannot have a rate of change with respect to something that is not changing. This objection may be obvious, but it is not valid; if x cannot be constant in $d y / d x$ there should be something in the definition that implies this.

So what are x and y ? We can take a hint from the fact that they have values. There is a familiar entity that has values-the function. Or we can make the reasonable suggestion that the x and y in $d y / d x$ are the same as in $d x$ and $d y$. In the modern (Fréchet) theory of differentials, x and y are functions. We don't apply Fréchet theory to elementary calculus, but if we did the x and y would be the familiar type of function whose values and arguments are real numbers. From now on by "function" I shall mean this type of function.

Now what is $d y / d x$? First, look to Leibniz. His $d x$ was an infinitesimal increment in x. An increment in x is $x(c+h)-x(c)$ and the corresponding increment in y is $y(c+h)-y(c)$. Then the value of $d y / d x$ at c is

$$
\begin{equation*}
\frac{y(c+h)-y(c)}{x(c+h)-x(c)} \tag{1}
\end{equation*}
$$

where h is infinitesimal. Nowadays instead of having h infinitesimal we have it approach zero. Then (1) becomes $y^{\prime}(c) / x^{\prime}(c)$ if x and y are differentiable at c and $x^{\prime}(c) \neq 0$.

We find the same result if we consider tangents: the slope of a secant of the graph of y against x is (1), and the slope of the tangent is its limit. Rates of change lead to the same result: if x and y represent two quantities that vary with time the average rate of change of the second quantity with respect to the first between times c and $c+h$ is (1) and the instantaneous rate of change is its limit.

All this suggests the following definition.
Definition. If x and y are functions, $d y / d x$ is y^{\prime} / x^{\prime}.
From this definition we can prove the familiar rules of differentiation, no longer as mere rules but as properly-stated theorems. It is convenient to use the not-uncommon figures of speech " f exists at c " for " $f(c)$ exists" and " $f=g$ at c " for " $f(c)=g(c)$ ".

For example
Theorem (chain rule). If x, y and z are functions,

$$
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}
$$

wherever the right-hand side exists.
Proof: If the right-hand side exists at c, then

$$
\left(\frac{d z}{d y} \frac{d y}{d x}\right)(c)=\frac{d z}{d y}(c) \frac{d y}{d x}(c)=\frac{z^{\prime}(c) y^{\prime}(c)}{y^{\prime}(c) x^{\prime}(c)}=\frac{z^{\prime}(c)}{x^{\prime}(c)}=\frac{d z}{d x}(c) .
$$

We can also say clearly and definitely:
Theorem. If x is constant, $d y / d x$ does not exist anywhere.
Proof: x^{\prime} has the value 0 .
Theorem. If x is increasing on an interval I and $d y / d x$ is negative on I then y is decreasing on I.

There are analogous results if x is decreasing or $d y / d x$ is positive or both. The proofs are obvious.

Our definition legitimizes the use of parametric and implicit differentiation. For example,

$$
x(t)=2 \cos t, y(t)=\sin t
$$

is a parametrization of the ellipse $x^{2}+4 y^{2}=4$. We have

$$
\frac{d y}{d x}(t)=\frac{y^{\prime}(t)}{x^{\prime}(t)}=-\frac{\cos t}{2 \sin t},
$$

giving the slope at $(2 \cos t, \sin t)$. This calculation, and the corresponding implicit one, occur in texts, but in any text which defines $d y / d x$ only where y is a function of x they are necessarily invalid.

Finally how does our definition relate to the traditional one? First, what is $f(x)$ if x is a function? It is the function $t \rightarrow f(x(t))$. For example, the speed of a body moving with positive acceleration is a function of the distance covered: if y denotes the speed and x the distance, then $y=f(x)$ for some f. (If the acceleration a is constant, $f(x)=\downarrow(2 a x)$.) At time t, when the distance is $x(t)$, the speed is $f(x(t))$, so that $y(t)=f(x(t))$.

It follows that if $y=f(x)$ then $y^{\prime}=f^{\prime}(x) x^{\prime}$ wherever the right-hand side exists, and so $d y / d x=f^{\prime}(x)$ wherever the right-hand side exists and x^{\prime} has a non-zero value.

Adopting the definition suggested here would not alter the well-known and universally-accepted formulas involving the Leibnizian derivative, but it would give them a sound basis.

REFERENCES

1. Serge Lang, A First Course in the Calculus (third edition) 1971, p. 248.
2. A. R. Pargeter, Mathematical Gazette, 54 (1970) p. 165.

Department of Mathematics
University of British Columbia
\#121-1984 Mathematics Road
Vancouver, B.C., Canada V6T 1 Y4

They frequently collaborated, but these photos were taken far apart: the first in 1986 and the second in 1938.
(see page 923.)

