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VVhat Is Wrong With the Defilnition 
of dy/dx? 

Hugh Thurston 
.. , I . 

We shall use the notations dy/dJc and f'(x) freely and interchangeably. [1] 
The fact that dy/dJc and f'(x) are not interchangeable is evident when you consider that one 

does not write dy/d3 for f'(3). [2] 

For a start, the definition is incomplete. It is always a good idea to know what we 
are talking about, but definitions of dy/dx do not say what the x and y are; in 
contrast, definitions of f'(x) make it clear that f is a function and x a number. 

Secondly, the definition is ambiguous. Most texts describe dy/dx as another 
notation for f'(x) where y = f(x). For this to be valid they should prove that if 
f(x) = g(x) then f '(x) = g'(x), but they don't. Indeed, it is hard to prove 
anything about dy/dx without knowing what x and y are. All we can say for 
certain is that they are not numbers: f '(3) cannot be denoted by dy/d3. 

Ambiguity breeds paradox. Whatever x may be, it is something that has 
values: in the familiar formula dy/dxlx=c, c is a value of x. Moreover, y can be 
constant; we all know that if y is constant then dy/dx is zero. The formula 

-= 1/- 
dy / dx 

shows that x and y are the same kind of entity, so in principle x can be constant. 
Suppose that x is constant with value 1. Then x2 = x3, dx2/dx = dx3/dx, and 
2x = 3x2. But 2x has value 2 and 3X2 has value 3. The obvious objection is that it 
is nonsense to differentiate with respect to a constant we cannot have a rate of 
change with respect to something that is not changing. This objection may be 
obvious, but it is not valid; if x cannot be constant in dy/dx there should be 
something in the definition that implies this. 

So what are x and y? We can take a hint from the fact that they have values. 
There is a familiar entity that has values the function. Or we can make the 
reasonable suggestion that the x and y in dy/dx are the same as in dx and dy. In 
the modern (Frechet) theory of differentials, x and y are functions. We don't 
apply Frechet theory to elementary calculus, but if we did the x and y would be 
the familiar type of function whose values and arguments are real numbers. From 
now on by "function" I shall mean this type of function. 

Now what is dy/dx? First, look to Leibniz. His dx was an infinitesimal 
incrementin x.Anincrementin x is x(c+h)-x(c)andthecorresponding 
increment in y is y(c + h) - y(c). Then the value of dy/dx at c is 

y(c + h)-y(c) 1 
x(c +h) -x(c) ( ) 
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where h is infinitesimal. Nowadays instead of having h infinitesimal we have it 
approach zero. Then (l)becomes y'(c)/x'(c) if x and y are differentiable at c and 
x'(c) + O. 

We find the same result if we consider tangents: the slope of a secant of the 
graph of y against x is (1), and the slope of the tangent is its limit. Rates of 
change lead to the same result: if x and y represent two quantities that vary with 
time the average rate of change of the second quantity with respect to the first 
between times c and c + h is (1) and the instantaneous rate of change is its limit. 

All this suggests the following definition. 

Defilnition. If x and y are functions, dy/dx is y'/x'. 

From this definition we can prove the familiar rules of differentiation, no longer 
as mere rules but as properly-stated theorems. It is convenient to use the 
not-uncommon figures of speech "f exists at c" for "f(c) exists" and "f = g at c" 
for "f(c) = g(c)". 

ror examp e 

Theorem (chain rule). If x, y and z are functions, 
dz dz dy 
dx dy c 

wherever the right-hand side exists. 

Proof: If the right-hand side exists at c, then 

( dy dX ) ( c ) = d ( C) dY ( c) = Z ( C) y ( C) Z ( C) dz 

We can also say clearly and definitely: 

Theorem. If x is constant, dy/dx does not exist anywhere. 

Proof: x' has the value 0. 

Theorem. If x is increasing on an interval I and dy/dx is negative on I then y is 
decreasing on I. 

There are analogous results if x is decreasing or dy/dx is positive or both. The 
proofs are obvious. 

Our definition legitimizes the use of parametric and implicit differentiation. For 
example, 

x(t) = 2cos t, y(t) = sin t 

is a parametrization of the ellipse x2 + 4y2 = 4. We have 

dy (t) = Y (t) cos t 
dx x'(t) 2sin t ' 

giving the slope at (2cos t, sin t). This calculation, and the corresponding implicit 
one, occur in texts, but in any text which defines dy/dx only where y is a function 
of x they are necessarily invalid. 
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(see page 923.) 
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Finally how does our definition relate to the traditional one? First, what is f(x) 

if x is a function? It is the Xnction t f(x(t)). For example, the speed of a body 

moving with positive acceleration is a function of the distance covered: if y denotes 
the speed and x the distance, then y = f(x) for some f. (If the acceleration a is 
constant, f(x)= ;(2ax).) At te t, when the distance is x(t), the speed is 
f(x(t)), so that y(t) = f(x(t)). 

It follows that if y =f(x) then y' = f'(x)x' wherever the right-hand side exists, 
and so dy/bc = f '(x) wherever the right-hand side exists and x' has a non-zero 
value. 

Adopting the definition suggested here would not alter the well-known and 
universally-accepted formulas involving the Leibnizian derivative, but it would give 
them a sound basis. 

REFERENCES 

1. Serge Lang, A First Course in the Calculus (third edition) 1971, p. 248. 
2. A. R. Pargeter, Mathematical Gazette, 54 (1970) p. 165. 
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