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A Mechanical Derivation of the Area 
of the Sphere 

David Garber and Boaz Tsaban 

1. INTRODUCTION. In the beginning of the twelfth century CE, an interesting new 
geometry book appeared: The Book of Mensuration of the Earth and its Division, by 
Rabbi Abraham Bar Hiya (acronym RABH), a Jewish philosopher and scientist. This 
book is interesting both historically and mathematically. Its historical aspect is dis- 
cussed in [3]. In this paper we consider the mathematical aspect. 

The second part of the book contains a beautiful mechanical derivation of the area 
of the disk [5, ?95]. Roughly speaking, the argument goes as follows (see Figure 1): 
The disk is viewed as the collection of all the concentric circles it contains. If we cut 

-- -- -- -- -- - ---- - -- -- --------- 

Figure 1. 

the circles along the radius of the disk, and let them fan out to become straight lines, we 
get a triangle (because the ratio of the circumferences of the circles to their diameters 
is constant). The base length of the resulting triangle is equal to the circumference of 
the original circle, and its height is equal to the radius of this circle. Thus, the area of a 
circle is equal to half of the product of the radius and the circumference. Using modern 
terms, this means that the area of the disk with radius R is equal to 

2,-R * R 2 2iRR = icR2. 
2 

This is not the first derivation of the area of the disk from its circumference. 
Archimedes preceded RABH by more than thirteen centuries. The advantage of the 
Archimedean proof over RABH'S is its mathematical completeness. However, the nov- 
elty of RABH'S proof lies in the fact that it can be grasped by the reader who does not 
have solid mathematical knowledge. 

2. A MODERN PROOF OF THE VALIDITY OF RABH'S ARGUMENT. Crit- 
icism of this proof is discussed in [1], [2], and [3]. The proof, however, remained 
mathematically incomplete until 1991, when we used modern mathematical tools to 
justify it. Our formalization appears in [4]. We give here a brief description. 
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The modem method of obtaining areas from lengths is the integral calculus. Ad- 
vanced calculus gives us a strong tool for finding the change in the area of a given 
shape under continuously differentiable transformations-namely, the Jacobian. We 
recall the following well known fact: 

Fact 1. Let A and B be two planar figures. If there is a continuously differentiable 
bijection g : A -* B satisfying Jg(x) :A Ofor all x in A, then the area of B is equal to 

fA I Jg 1, where Jg denotes the determinant of the differential matrix of g. In particular, 
if Jg _ 1, then the areas of A and B are equal. 

RABH'S proof defines a bijection between a disk and a triangle. For convenience, 
we take g to be the inverse of RABH'S bijection. That is, g maps each line segment 
from the triangle to a corresponding concentric circle; see Figure 2: 

g(r, u) = (r cos-, r sin-) (O < r < R; -r < u <icr) 

y U 

UO~~~~~U 

U0 C )/>X r r r 

Figure 2. 

Note that g is an injection, as r is the radius of the concentric circle to which the image 
g (r, u) belongs, and u is the (signed) length measured on the arc of this circle, from 
the positive part of the x axis. 

We now check that the Jacobian of this transformation is 1: 

a (rcos u) a (rcos u) 

Jg(r,u)=det a (rsinu) a(rIsin,) 

L ir r 
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=det[----J2r() r(-i = 

- U U . U .U 
cos - + - sin- -sn - 

=det! r r r r r 
sin- + cos - cos- 

r r r r r 

u u. fl\1u - 

= de r r r r r, 

U U U .2U U. U U = cos- + - sin - cos - + sin - - - s -cos- = 
r r r r r r r r 

= cos - + sin - = 1. 
r r 

3. DERIVING THE AREA OF THE SPHERE. We now use RABH'S method to 
derive the surface area of the sphere. We view the sphere as consisting of the horizontal 
circles contained in it. First, we cut the circles along the dotted part of the boldfaced 
large circle (see Figure 3) and straighten them. The resulting surface is bent along the 
second half of the large circle (Figure 4). 

Figure 3. 

Figure 4. 

Now we can straighten this bent surface to yield a planar figure (Figure 5). From sym- 
metry of the right and left parts of Figure 5, it is enough to find the area of the right half 
(which corresponds to the right half of the sphere). The area of this part can be found 
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once we have an explicit description of its graph. In Figure 6, the variable u ranges 
from -7R/2 to icR/2, and for each value of u, v ranges from 0 to icr, where r = 
R cos(u/R). Therefore, the graph is described by the function v = iR cos(u/R). 

Figure 5. 

u~~~~~~~~~~~~ 

.............~~~~~~~~~~~. 

........ .. ..... ... .. .. 

Figure 6. 

We can now find the area: 

7r 
R/2R2 2 

i cR cos(u/R)du = iR [R sin (ulR)]r7rR2= 27R2. (1) 
-rR/2 

This is the area of half a sphere, so the area of a sphere is 47 R2. 
Calculation of the integral in (1) can actually be avoided: Since the area bounded 

by the cosine graph and the x axis in the range [-ic/2, -c/2] is equal to 2 (= 
[(/2 cosxdx), the area below cos(x/R) in the range [-7rR/2, 7cR/2] is equal to 
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2R. As v = 7rRcos(u/R), the desired area is 7rR . 2R = 27rR2. Thus, the whole 
argument can be viewed as "mechanical". However, such an argument could not exist 
in RABH'S time, since the notions of a graph (and an area below a graph) were not 
developed then. 

4. FORMALIZING THE DERIVATION. We now formalize our argument. Let g: 
2-* R3 be the transformation that assigns to each point (u, v) in the planar figure 

the corresponding point (x, y, z) on the sphere. 
Write g(u, v) := (x(u, v), y(u, v), z(u, v)). Then the area of the sphere is equal to 

f 1 ag x aag ldu dv, where x is the vector product: 

[ik1 

a3g X g d f det ax ay az (2) au av Au au au 
ax 

y Dzj av aV aV 

Let a = u/R be the angle corresponding to the arc u on the sphere, and let 0 = 
v/(R cos a) be the angle corresponding to the arc v on the sphere (see Figure 6). The 
coordinates of the point at the end of v are: 

* x = R cos a cos 0 (thus ax = sin a cos 0-0 sin 0 sin a, and = _ sin 0), 

* y = R cos a sin 0 (thus ay = sin a sin 0 + 0 cos 0 sin a, and ay= cos 0), au av 

z = R sin a (thus az = cos a, and aZ = 0). 

The vector product (2) is 

(-Cos 0 Cos al, - cos a sin 0, - sin a), 

so 

agx = g 
/cos2 a cos2 0 + cos2 a sin20 + sin2a = 1. 

au av 

5. THE AREA OF HORIZONTAL SECTIONS OF THE SPHERE. Apply- 
ing RABH'S method to horizontal sections of the sphere is now straightforward: 
We simply let u vary in the appropriate range (see Figure 6). Consider the up- 
per half of the sphere. The area of the horizontal section of height h = a R is 
2 foR7rRcos(u/R)du = 27rR[Rsin(u/R)]oR = 2rR(Rsina) = 2l7rRh. This im- 
plies that the area of the horizontal section starting at height a and ending at height 
b = a + A is 

2-rRb - 2icRa = 27rRA. 

Thus, we have a "mechanical" explanation of the interesting fact that the section's area 
depends only on A. 

6. REVERSING THE USUAL COMPUTATIONS. It is common to derive the area 
of the sphere from the volume of the corresponding ball using the derivation 

d (43\ 2 

dR 3 T 
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However, it takes a lot of effort to explain why this derivative is equal to the area of 
the sphere. 

Using the ideas from the earlier sections, we can reverse the computation and find 
the volume of the ball by summing up the areas of the concentric spheres that are 
contained in it: 

rR 4 
47rrdr = -7rR3. 

We conclude with the curiosity that mechanically, this derivation of the volume of the 
ball corresponds to flattening all of the spheres as in Section 3, and then calculating 
the volume of the resulting shape (see Figure 7). 

Figure 7. 
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